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Abstract

We introduce novel hypothesis tests to allow for statistical inference for density ratios. More pre-

cisely, we introduce the Density Ratio Permutation Test (DRPT) for testing H0 : g ∝ rf based on

independent data drawn from distributions with densities f and g, where the hypothesised density ratio

r is a fixed function. The proposed test employs an efficient Markov Chain Monte Carlo algorithm to

draw permutations of the combined dataset according to a distribution determined by r, producing ex-

changeable versions of the whole sample and thereby establishing finite-sample validity. Regarding the

test’s behaviour under the alternative hypothesis, we begin by demonstrating that if the test statistic is

chosen as an Integral Probability Metric (IPM), the DRPT is consistent under mild assumptions on the

function class that defines the IPM. We then narrow our focus to the setting where the function class

is a Reproducing Kernel Hilbert Space, and introduce a generalisation of the classical Maximum Mean

Discrepancy (MMD), which we term Shifted-MMD. For continuous data, assuming that a normalised

version of g − rf lies in a Sobolev ball, we establish the minimax optimality of the DRPT based on the

Shifted-MMD. For discrete data with finite support, we characterise the complex permutation sampling

distribution using a noncentral hypergeometric distribution, significantly reducing computational costs.

We further extend our approach to scenarios with an unknown shift factor r, estimating it from part of

the data using Density Ratio Estimation techniques, and derive Type-I error bounds based on estimation

error. Additionally, we demonstrate how the DRPT can be adapted for conditional two-sample testing,

establishing it as a versatile tool for assessing modelling assumptions on importance weights, covariate

shifts and related scenarios, which frequently arise in contexts such as transfer learning and causal infer-

ence. Finally, we validate our theoretical findings through experiments on both simulated and real-world

datasets.

1 Introduction

In modern statistical applications, it is increasingly common to encounter multiple datasets originating

from different sources (Koh et al., 2020). Consequently, significant efforts have been devoted to developing

methods that effectively combine these datasets to address various inferential tasks (see Storkey, 2009; Weiss

et al., 2016, for surveys in transfer learning). For example, we may wish to draw inferences about a test

data population, even when some of our training data come from related but distinct distributions. Such

challenges are prevalent in many practical scenarios. For instance, in the context of Large Language Models,
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thoughtfully incorporating human-authored data alongside model-generated content during training helps

maintain diversity and enhance overall performance (see Ji et al., 2025, for a survey). As another example,

in medical applications, practitioners might be interested in making predictions in a particular experimental

setting or using specific equipment, while also utilising data collected under different conditions or with

alternative tools (see Guan and Liu, 2022, for a survey). To develop statistical procedures that fully utilise

the information from all samples, it is crucial to make specific assumptions about the relationship between

their distributions. In this regard, a widely adopted and effective approach is to leverage knowledge of the

density ratio – commonly known as the importance in the importance sampling literature (Tokdar and Kass,

2010). This ratio can be used to implement importance weighting techniques (e.g. Kahn and Harris, 1951;

Horvitz and Thompson, 1952; Owen and Zhou, 2000), which assign varying weights to data points to correct

for biases and emphasise relevant observations.

More precisely, focusing on the case of two independent collections of i.i.d. samples, suppose we have

access to two distinct datasets, each coming from a different distribution, and the primary goal is to combine

the information from these datasets effectively. For instance, suppose we have data (X1, . . . , Xn) from a

distribution Pf on a domain X and data (Y1, . . . , Ym) from another distribution Pg on a domain Y = X . To

integrate these datasets in a meaningful way, we need to make assumptions about the relationship between

the distributions. A powerful and commonly used approach is to assume that we know (or can estimate)

the density ratio g/f , where f and g are the densities of Pf and Pg, respectively, with respect to a common

dominating measure. This density ratio serves as a crucial bridge that allows us to connect the two distri-

butions and take advantage of their combined information efficiently. Applications of methodologies based

on the density ratio are widespread. They appear in nonparametric regression (Ma et al., 2023), efficient

estimation with additional incomplete data (Berrett, 2024), testing under distributional shifts (Thams et al.,

2023), quantile function estimation (Chen and Liu, 2013), reinforcement learning (e.g. Sutton and Barto,

2018), and adjusting for confounding or selection bias in causal inference (Robins et al., 2000). Another

significant area where density ratios play a vital role is in the machine learning domain, particularly in

tasks like domain adaptation and transfer learning, where distribution shifts between training and testing

data are common and can significantly degrade prediction accuracy. For a collection of ten datasets that

reflect diverse, real-world distribution shifts, see Koh et al. (2020). In such settings, it is commonly assumed

that train and test data originate from different but related distributions, with a prominent example being

the covariate shift assumption (Tibshirani et al., 2019; Jin and Candès, 2023), which attributes the entire

distributional shift to differences in the covariates. To formalise this, consider a regression or classifica-

tion problem with (X,Y ) ∈ Zcov × Zpred ⊆ Rd × R, where the training set Ztrain = {(Xtr
i , Y

tr
i )}ntr

i=1 are

i.i.d. samples from f(x, y), and the test set Ztest = {(Xtest
i , Y test

i )}ntest
i=1 are i.i.d. samples from g(x, y). Under

the covariate shift assumption, the density ratio depends solely on the covariates, meaning there exists a

function r : Zcov → R+ such that g(x, y)/f(x, y) = r(x). This implies that the conditional distribution of

the predictor given the covariates remains invariant between the training and testing data (see Section 4.2,

Lee et al. (2024), and Hu and Lei (2020)). When this assumption holds, it becomes possible to enhance

predictive performance by reweighting the training data according to the marginal density ratio (see, e.g.

Gretton et al., 2009a; Sugiyama and Kawanabe, 2012).

While the covariate shift framework is reasonable in many practical applications, real-world scenarios

often involve more complex types of distributional shifts. As such, it becomes essential to have a statistical
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procedure that can confidently determine whether the covariate shift assumption—or other similar assump-

tions involving the density ratio—is valid. In this paper, we address the problem of testing the hypothesis

H0 : g ∝ r f, (1)

based on independent data X1, . . . , Xn ∼ Pf and Y1, . . . , Ym ∼ Pg as introduced above. The (unnormalised)

density ratio r is treated as fixed here, though in Section 4.1 we extend the scope of our work to include

settings where r is hypothesised to lie in a parametric family and is estimated from data. Notably, if r is

constant, the hypothesis (1) reduces to that of the classical two-sample testing problem, a cornerstone of

nonparametric statistics (e.g. Ingster and Suslina, 2003). It is important to emphasise that our focus is not

on testing whether f = g based on an estimate of the density ratio; for this related problem, readers may

refer to Hido et al. (2011), Sugiyama et al. (2011), and Kanamori et al. (2010b). Instead, our results can

be seen as initiating a line of work in statistical inference for density ratios, important objects for which the

existing focus is on estimation guarantees. This literature was comprehensively reviewed by Sugiyama et al.

(2010); we discuss this work and recent advances in more detail in Section 4.1.

Our approach to assessing (1) centres on the novel Density Ratio Permutation Test (DRPT), which em-

ploys a suitable resampling scheme to calibrate any given test statistic. Permutation methods are widely

used in hypothesis testing, due to their guaranteed validity and strong power properties in both classical

asymptotic (Hoeffding, 1952; Lehmann and Romano, 2006) and non-asymptotic (Berrett et al., 2021; Kim

et al., 2022) senses. In two-sample testing permutations are used to approximate null distributions by ran-

domly reassigning observation labels, though our method introduces important modifications to allow their

use in our more general problem. Traditionally, permutation tests draw permutations uniformly at random,

which, in classical settings, is sufficient to satisfy the randomisation hypothesis—as discussed in Lehmann

and Romano (2006)—thereby providing exact control of the Type-I error. However, this conventional ap-

proach is not appropriate for our testing problem (1) since the two samples are not exchangeable under the

null hypothesis. We address this limitation by introducing a modified permutation sampling approach (Al-

gorithm 1), which produces permutations of (X1, . . . , Xn, Y1, . . . , Ym) according to a distribution dependent

on the shift function r, restoring exchangeability of the true and resampled datasets under H0 and thus

ensuring finite-sample validity (Proposition 3). When r is constant, our method naturally reduces to the

classical permutation test.

This non-uniform permutation sampling approach represents a departure from standard methodology,

but aligns with recent developments tackling other testing problems, including:

1. The tests of equality of distributions, given biased data, presented in Kang and Nelson (2009), which

will be discussed later;

2. The Conditional Permutation Test (CPT) developed in Berrett et al. (2020) for testing conditional

independence (H0 : X ⊥⊥ Y |Z), which draws permutations based on the knowledge of the conditional

distribution of X|Z;

3. The framework proposed by Ramdas et al. (2022) for testing data exchangeability using non-uniform

permutation distributions. This approach can be seen as a dual to sampling non-uniform rearrange-

ments of indices, as it samples permutations uniformly but incorporates weights in the definition of
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the p-value. While this methodology could theoretically be applied in our setting, its practicality is

limited by the need for an extremely large number of permutations.

An alternative approach to addressing the problem in (1) would involve using the knowledge of r to perform

importance sampling on (X1, . . . , Xn), thereby creating a sample from a distribution proportional to rf ,

which can then be combined with (Y1, . . . , Ym) to apply classical two-sample testing methods. This broad

strategy has been employed in works such as Thams et al. (2023) and Chau et al. (2024) for other statistical

problems. However, we intentionally avoid this approach as importance sampling typically results in a much

smaller effective sample size, leading to less powerful tests in practice. We will empirically validate this

claim in Section 5.1. Finally, we also mention the fact that our methodology also parallels recent advances in

conformal prediction under distributional shifts, where non-exchangeable data scenarios necessitate modified

approaches to maintain valid coverage (Tibshirani et al., 2019; Hu and Lei, 2020; Prinster et al., 2024).

Perhaps the most closely related work is Kang and Nelson (2009), which focuses on testing the null

hypothesis f = g based on biased data sampled from w1f and w2g, where w1 and w2 are positive functions,

instead of directly from f and g. Their method aligns with ours in that the p-value is computed by sam-

pling permutations according to a specific distribution dependent on w1 and w2. They propose a sampling

algorithm for this distribution and analyse its asymptotic validity and power. In comparison, our sampling

algorithm (Algorithm 1) preserves the target distribution at each step, and results in exact validity for finite

sample sizes (Proposition 3). Additionally, we provide non-asymptotic, minimax rate-optimal power guar-

antees, going beyond asymptotic results. For more on two-sample testing under biased sampling schemes,

we refer readers to Navarro et al. (2003); Kang and Nelson (2008); Economou and Tzavelas (2013, 2014);

wen Chang and Wang (2023).

Finally, as mentioned earlier, there is an intriguing connection between our framework and the conditional

two-sample testing problem, recently explored in Lee et al. (2024). Suppose we observe two independent

samples {(X(1)
i , Y

(1)
i )}n1

i=1 and {(X(2)
i , Y

(2)
i )}n2

i=1, drawn from distributions P
(1)
XY = P

(1)
X P

(1)
Y |X and P

(2)
XY =

P
(2)
X P

(2)
Y |X , respectively. The objective of conditional two-sample testing is to test whether

P
(1)
X

{
P

(1)
Y |X(·|X) = P

(2)
Y |X(·|X)

}
= 1

holds. Assuming all distributions have corresponding densities, the null hypothesis f
(1)
Y |X(y | x) = f

(2)
Y |X(y | x)

is equivalent to f
(1)
XY (x, y) = {f (1)X (x)/f

(2)
X (x)}f (2)XY (x, y), where f

(1)
XY and f

(2)
XY are the joint densities. This

demonstrates that our setup—while more general—encompasses the conditional two-sample testing problem

when the shift function r corresponds to the marginal density ratio. Consequently, our methodology can

be applied to conditional two-sample testing, offering a novel permutation-calibrated test. Similar to the

density-ratio-based tests proposed by Lee et al. (2024), our method involves estimating the marginal density

ratio. However, while their approach requires a double asymptotic calibration—estimating both the marginal

density ratio and the null distribution of the test statistic—our method achieves an asymptotic calibration

by estimating only the marginal density ratio. For further detail and numerical comparisons, see Sections

4.2 and 5.2.
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1.1 Outline

We now briefly outline our main contributions. In Section 2, we introduce a permutation test for the testing

problem (1), based on generating non-uniform permutations of the combined dataset according to a distribu-

tion determined by r. The test uses an efficient Markov Chain Monte Carlo (MCMC) sampler (Algorithms 1

and 2) to generate these permutations, producing exchangeable versions of the data and ensuring finite-

sample validity. This is formalised in Theorem 1 and Proposition 3, our main results on validity. Although

the permutation distribution is generally complex, in (7) we explicitly characterise it using Fisher’s Non-

central Hypergeometric distribution in the case of discrete data with finite support, significantly reducing

computational costs. These results are discussed in Section 2.1, with further power analyses provided in

Appendix B.

Section 3 is dedicated to a power analysis of the DRPT. We first show that, if the test statistic is an

empirical estimate of an IPM characterising the null, the DRPT is consistent under mild assumptions on

the function class associated to the IPM (Theorem 6). This builds on the fact that the permuted samples

asymptotically satisfy the null hypothesis (Lemma 7), in parallel with classical permutation testing theory.

We then focus on the case where the function class is a Reproducing Kernel Hilbert Space (RKHS). In

Proposition 8, we introduce the Shifted-MMD, a generalisation of the classical MMD which reduces to a

scaled version of it when r is constant. For continuous data, assuming that a normalised version of g−rf lies

in a Sobolev ball, we prove that the DRPT based on an estimate of the Shifted-MMD with an appropriate

kernel achieves minimax optimality (Theorems 9 and 10). This is the central theoretical contribution of

Section 3 which, as well as providing an optimal solution to testing problem (1), also establishes the first

minimax optimality results for test procedures based on non-uniform permutations. The analytic techniques

we have developed for studying the convergence properties of relevant Markov chains may have broader

applications, potentially extending to establish non-asymptotic power guarantees for other methodologies,

such as the CPT proposed in Berrett et al. (2020).

Section 4 presents extensions of our method: Section 4.1 addresses the case where the shift factor r is

unknown, and quantifies the inflation in Type-I error due to density ratio estimation error (Proposition 11).

Section 4.2 adapts the DRPT to the conditional two-sample testing problem. Finally, in Section 5, we vali-

date our methodology through a range of numerical experiments. All proofs are provided in Appendix A.

We conclude the Introduction with some notation that is used throughout the paper. We denote by R+

the set of positive real numbers and by R≥1 the set of real numbers greater than or equal to one. We further

set N+ = N \ {0}. The symmetric group of all permutations over the set [n] := {1, . . . , n} is denoted by Sn.
For a set A, we write #A to denote its cardinality. The maximum and minimum operators are sometimes

denoted by ∨ and ∧, respectively. We define the support of a function f defined on a domain X to be

the closure of the set where f does not vanish, that is, supp f := {x ∈ X : f(x) ̸= 0}. The set of bounded

and continuous functions on X is denoted by C0
b (X ), and δx denotes the Dirac delta measure centred at x.

Given 1 ≤ p < ∞ and d ≥ 1, we define the Lp norm of a function f as ∥f∥p :=
(∫

Rd |f(x)|pdx
)1/p

, and the

corresponding Lp(Rd) space as the set of all measurable functions for which this norm is finite. Furthermore,

∥ · ∥∞ denotes the essential supremum norm, that is, ∥f∥∞ := ess supx∈Rd |f(x)|, and L∞(Rd) refers to the

set of functions that are bounded almost everywhere. Finally, we use C∞(X ) to denote the space of infinitely
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differentiable functions on a domain X , and z for the complex conjugate of z ∈ C.

2 Permutation methodology and validity

Let X = Y and n,m ≥ 1. Suppose we observe a dataset Z = (X1, . . . , Xn, Y1, . . . , Ym) ⊆ Xn×Ym, consisting

of n +m independent random variables, where X1, . . . , Xn
i.i.d.∼ Pf and Y1, . . . , Ym

i.i.d.∼ Pg. Assume further

that Pf and Pg are absolutely continuous with respect to a common dominating measure µ. We propose a

refined permutation test designed to detect deviations from the null hypothesis

H0 : g ∝ r f,

where the (unnormalised) density ratio r : X → R+ is assumed to be known. Notice that, by the definition

of R+ given above, we have r(x) > 0 for all x ∈ X . For simplicity, we also assume that the supports of f

and g are the same. If this is not the case—that is, if r(x) > 0 for all x ∈ X but supp g ̸= supp f—then

the testing problem becomes easier, as we expect to eventually observe signals in the regions corresponding

to the symmetric difference of the supports. Similarly, if supp r ̸= X but supp g ⊆ supp r, we can restrict

the sample space to supp r and carry out the analysis as before. If this inclusion does not hold, the testing

problem again becomes easier. Here, the methodology is to create copies Z(1), . . . , Z(H), with H ≥ 1, that

are exchangeable with Z = (Z1, . . . , Zn+m) := (X1, . . . , Xn, Y1, . . . , Ym) under H0. With such a choice of the

Z(h)’s, for any test statistic T (Z), a p-value can be given by

p =
1 +

∑H
h=1 1{T (Z(h)) ≥ T (Z)}

1 +H
. (2)

This leads to a valid test, as shown in Theorem 1, and it remains to find a method to generate such Z(h)’s.

Given any vector x = (x1, . . . , xn+m) and any permutation σ ∈ Sn+m, define xσ =
(
xσ(1), . . . , xσ(n+m)

)
.

Specifically, we set

Z(h) = Zσ(h) where P
{
σ(h) = σ | Z

}
=

∏
i∈{n+1,...,n+m} r(Zσ(i))∑

σ̃∈Sn+m

∏
i∈{n+1,...,n+m} r(Zσ̃(i))

. (3)

To see why this results in exchangeable data under H0, it is sufficient to argue as in Berrett et al. (2020), and

consider an equivalent formulation of the permutation scheme. Let Z() =
(
Z(1), . . . , Z(n+m)

)
be the order

statistics of Z. When X ⊆ R, we naturally use the standard ordering on R. In the general case, we can

select any total ordering on X ; the specific choice does not matter, as its sole purpose is to let us examine

the set of Z-values without needing to know which value is associated with which data point. Define also

Z(p) =
(
Z(p(1)), . . . , Z(p(n+m))

)
for each p ∈ Sn+m, and let P ∈ Sn+m be the permutation given by the ranks

of the true observed vector Z, so that Z = Z(P ). Under the null hypothesis that g ∝ r f , we can show that

the distribution of the true ranks P , conditional on the order statistics Z(), is given by

P
{
P = p | Z()

}
=

∏
i∈{n+1,...,n+m} r(Z(p(i)))∑

p̃∈Sn+m

∏
i∈{n+1,...,n+m} r(Z(p̃(i)))

. (4)
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Furthermore, examining the definition (3) of the DRPT copies Z(1), . . . , Z(H), these can equivalently be

defined by

Z(h) = Z(P (h)) where P (h) | Z() is drawn from (4).

Comparing with (3), we can thus establish the bijection P (h) = σ(h)◦P , which shows the equivalence between

(3) and (4). Building upon this, we can prove the following result showing that the DRPT constitutes a

valid test of H0.

Theorem 1. Assume that H0 : g ∝ r f is true. Suppose that Z(1), . . . , Z(H) are drawn i.i.d. from the DRPT

sampling scheme given in (4). Then the H + 1 random variables(
Z,Z(1), . . . , Z(H)

)
are exchangeable. In particular, this implies that for any statistic T : Xn × Ym −→ R, the p-value defined

in (2) is valid, satisfying P{p ≤ α} ≤ α for any desired Type-I error rate α ∈ (0, 1) when H0 is true.

In order to run the DRPT, we need to be able to sample permutations σ(1), . . . , σ(H) from the distribution

given in (3) or, equivalently, P (1), . . . , P (H) from the distribution given in (4). We now address the challenge

of generating these samples efficiently and propose Algorithm 1 to tackle this problem. This procedure

is similar to the first algorithm presented in Berrett et al. (2020), where the shift function r plays a role

analogous to the conditional density q(· | ·) of X | Z.

Algorithm 1 Pairwise sampler for the DRPT

1: Initial permutation P0, integer S ≥ 1. Call K = min{n,m}.
2: for t ∈ [S] do
3: Sample a vector of couples τt = {(it1, jt1), . . . , (itK , jtK)} such that (it1, . . . , i

t
K) are sampled uniformly

and without replacement from [n], and (jt1, . . . , j
t
K) are sampled uniformly and without replacement

from {n+ 1, . . . , n+m}, and initialise Pt to be a copy of Pt−1.
4: for k ∈ [K] do
5: Draw a Bernoulli random variable Btik,jk with

P{Btik,jk = 1} =
r
(
Z(Pt−1(itk))

)
r
(
Z(Pt−1(itk))

)
+ r
(
Z(Pt−1(jtk))

) := ptik,jk , (5)

and swap Pt(i
t
k) with Pt(j

t
k) if B

t
ik,jk

= 1.
6: end for
7: end for
8: return PS .

Algorithm 1 is easily parallelisable due to the disjoint structure of the pairs in τt, and, most importantly,

it accurately targets the distribution in (4), guaranteeing that the resulting Markov chain converges to the

desired stationary distribution, as established in the following proposition.

Proposition 2. For any initial permutation P0, the distribution (4) of the permutation P conditional on

Z() is the unique stationary distribution of the Markov chain defined in Algorithm 1.

Remark 1. By examining the proof of Proposition 2, we see that other proposal mechanisms can also target

the invariant distribution in (4). Specifically, Step 5 in Algorithm 1 switches the indices itk and jtk with
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probability ptik,jk as in (5) but the key property used in the proof is

P{Btik,jk = 1}
P{Btik,jk = 0}

=
r
(
Z(Pt−1(itk))

)
r
(
Z(Pt−1(jtk))

) .
Thus, any alternative distribution on Btik,jk satisfying this ratio would work equally well. For example, for

the theoretical analysis of the methodology, it is more convenient to consider

p̃tik,jk :=
λ̂mn r

(
Z(Pt−1(itk))

){
n+ λ̂mr

(
Z(Pt−1(itk))

)}{
n+ λ̂mr

(
ZPt−1(jtk))

)} (6)

with λ̂ such that
∑n
i=1

λ̂mr(Xi)

n+λ̂mr(Xi)
=
∑m
j=1

n

n+λ̂mr(Yj)
.

Remark 2. Testing H0 : g ∝ rf is equivalent to testing H ′
0 : f ∝ 1

r g. We now show that our method is

similarly invariant under taking reciprocals of r and relabelling the samples, using either ptik,jk or p̃tik,jk . For

ptik,jk , observe that the appropriate quantity after relabelling is

(ptik,jk)
′ :=

1/r
(
Z(Pt−1(jtk))

)
1/r
(
Z(Pt−1(itk))

)
+ 1/r

(
Z(Pt−1(jtk))

) =
r
(
Z(Pt−1(itk))

)
r
(
Z(Pt−1(itk))

)
+ r
(
Z(Pt−1(jtk))

) ,
which matches ptik,jk exactly. In the case of p̃tik,jk , define

(p̃tik,jk)
′ :=

θ̂nm/r
(
Z(Pt−1(jtk))

){
m+ θ̂n/r

(
Z(Pt−1(itk))

)}{
m+ θ̂n/r

(
Z(Pt−1(jtk))

)} ,
with θ̂ such that

∑m
j=1

θ̂n/r(Yj)

m+θ̂n/r(Yj)
=

∑n
i=1

m

m+θ̂n/r(Xi)
. Here, n and m are switched because the roles

of the X’s and Y ’s are interchanged. By algebraic manipulation, one finds that θ̂ = λ̂−1. Substituting

back into (p̃tik,jk)
′ then shows (p̃tik,jk)

′ = p̃tik,jk , confirming the invariance of our algorithm under reciprocal

transformations of r.

By Proposition 2, Algorithm 1, when executed for sufficiently many steps S, generates a copy Z(PS) which

acts as an appropriate control for Z in testing H0. In fact, we can make a much stronger statement. Under

the null hypothesis, the original permutation P conditionally on Z() follows distribution (4). Consequently,

initialising Algorithm 1 with P0 = P (equivalently, with the original data vector Z) constitutes initialisation

from the stationary distribution. This implies that Z(PS) represents a draw from the exact target distribution

for any value of S, thereby providing a valid control for Z regardless of the number of steps taken. However,

the statistical power for rejecting the null hypothesis diminishes when S is small, as the control copy exhibits

excessive similarity to the original data vector Z. For practical implementation, we generate H copies,

denoted as Z(h) for h ∈ {1, . . . ,H}, with the requirement that the original data and all such H permutations

maintain mutual exchangeability. This can be achieved through a star-shaped sampling scheme, following

the methodology introduced by Besag and Clifford (1989) and subsequently applied in permutation-based

approaches by Berrett et al. (2020) and Ramdas et al. (2022).

Algorithm 2, when initialised with P0 = P , provides an exchangeable sampling mechanism, since the
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Algorithm 2 Star-shaped sampler for the DRPT

1: Initial permutation P0, integer S ≥ 1.
2: Let P∗ the output of Algorithm 1 after S steps, initialised at P0.
3: for h ∈ [H], independently do
4: Let P (h) the output of Algorithm 1 after S steps, initialised at P∗.
5: end for
6: return (P (1), . . . , P (H)).

permutation P∗ lies S steps away from each of the permutations (P, P (1), . . . , P (H)) and the Markov chain

associated to Algorithm 1 is reversible, as shown in the proof of Proposition 2. The following result verifies

exchangeability and ensures that the results of Theorem 1 remain satisfied when the permuted vectors

Z(1), . . . , Z(H) are obtained via Algorithm 2.

Proposition 3. Let Z() and P be the order statistics and ranks of Z, as defined previously, so that Z = Z(P ).

Let (P (1), . . . , P (H)) be the output of Algorithm 2, when initialised at P0 = P , and let Z(h) = Z(P (h)) for

each h = 1, . . . ,H. If H0 : g ∝ r f is true, the H +1 random variables
(
Z,Z(1), . . . , Z(H)

)
are exchangeable.

2.1 The DRPT for discrete data

One significant drawback of permutation tests is their computational cost, which in our setting stems from

choosing large values for H in (2) and S in Algorithm 2. In this subsection, we introduce an alternative

method for discrete data with finite support that is computationally more efficient, since it enables direct

sampling from (4) without relying on the MCMC sampler. Let X = Y = {0, . . . , J} =: J with J ≥ 1, and

let Xi
i.i.d.∼ f and Yi

i.i.d.∼ g, where

Pf{X = j} = fj and Pg{Y = j} = gj ,

for all j ∈ J , with
∑J
j=0 fj =

∑J
j=0 gj = 1. Given a sequence of positive numbers (r0, . . . , rJ), the testing

problem becomes

H0 : gj ∝ rjfj for all j ∈ J ,

so that r(x) =
∑
j∈J rj1{x = j}. At the sample level, the DRPT generates a permutation p given Z() as

in (4). Conditioned on the data, each permutation preserves the total number of units in each of the J + 1

categories, where the count for category j ∈ J is denoted by totj . What changes is how these values are

split between the first n and the last m data points. We can represent this using the following table:

Z(p(1:n)) Z(p(n+1:n+m)) +

0 tot0 −Np
Y,0 Np

Y,0 tot0
...

...
...

...

J totJ −Np
Y,J Np

Y,J totJ

+ n m m+ n

where Np
Y,j = #{i /∈ [n] : Z(p(i)) = j} = 1{Z(p(n+1)) = j} + . . . + 1{Z(p(n+m)) = j} for all j ∈ J . If we

restrict attention to test statistics that are functions of this frequency table, which is natural given that it is

a sufficient statistic in our model, the behaviour of the DRTP can be characterised through the distribution

9



of (Np
Y,0, . . . , N

p
Y,J)|Z(). In this regard, given the data and for w = (w0, . . . , wJ) such that

∑J
j=0 wj = m and

0 ∨ (totj − n) ≤ wj ≤ m ∧ totj for all j ∈ J , we have

P{Np
Y,0 = w0, . . . , N

p
Y,J = wJ | Z()} =

∑
p∈Sn+m:(Np

Y,0,...,N
p
Y,J )=w

P{P = p | Z()}

∝
∑

p∈Sn+m:(Np
Y,0,...,N

p
Y,J )=w

∏
i/∈[n]

r(Z(p(i))) =
∑

p∈Sn+m:(Np
Y,0,...,N

p
Y,J )=w

∏
j∈J

r
Np

Y,j

j

=

( ∏
j∈J

r
wj

j

)
#{p ∈ Sn+m : (Np

Y,0, . . . , N
p
Y,J) = w} = n!m!

∏
j∈J

r
wj

j

(
totj
wj

)
∝
∏
j∈J

r
wj

j

(
totj
wj

)
. (7)

Notice that in the penultimate step we used the fact that #{p ∈ Sn+m : (Np
Y,0, . . . , N

p
Y,J) = w} =

n!m!
∏
j∈J

(
totj
wj

)
, as there are

(
totj
wj

)
ways of choosing wj many j’s for the last m data points for all j ∈ J .

Considering all the possible ways in which we can further permute the first n and last m values gives the

extra factor of n!m!. This shows that (Np
Y,0, . . . , N

p
Y,J)|Z() is distributed according to Fisher’s Multivariate

Noncentral Hypergeometric distribution, which is a generalisation of the hypergeometric distribution where

sampling probabilities are adjusted by weight factors (see, e.g. McCullagh and Nelder, 1989, Section 7).

Coming back to the testing problem (1), the previous argument shows that in the case of discrete data with

finite support we can avoid sampling permutations from (4), as it is sufficient to sample (Np
Y,0, . . . , N

p
Y,J)|Z()

from (7). This can be done efficiently using for example the R-function rMFNCHypergeo from R-package

BiasedUrn.

Compared to the MCMC-based approach, aside from reducing computational runtime, the DRPT copies

of the table above generated through i.i.d. draws from (7) are conditionally independent, given the row

totals, across different h ∈ [H], while the Z(h)’s in the output of Algorithm 2 exhibit non-zero correlation

due to their shared initialisation. Nonetheless, this dependence decreases for larger and larger values of S.

Regarding its theoretical guarantees, finite-sample validity is ensured by Theorem 1. Additional properties

and a detailed power analysis of this version of the DRPT—henceforth referred to as the discrete DRPT—are

presented in Appendix B.

3 Power analysis and the Shifted MMD

3.1 General theory and IPMs

We now delve into the theoretical analysis of our methodology, and show that the DRPT is consistent under

mild assumptions, and minimax rate-optimal under some additional smoothness conditions. This subsection

is dedicated to proving the former claim. A sequence of tests is called consistent against a given class of

alternatives if, as the sample size tends to infinity, the test will reject the null with probability 1 under every

alternative. Such results can be proved for the classical r ≡ 1 case using the results of Hoeffding (1952).

An intuitive explanation of these results can be found in the fact that the permuted sample asymptotically

satisfies the null hypothesis. More precisely, letting σ be uniformly distributed over the symmetric group
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and assuming that n/m→ τ > 0, we have

1

n

n∑
i=1

φ(Zσ(i))
P−→
∫
φh1dµ and

1

m

n+m∑
j=n+1

φ(Zσ(j))
P−→
∫
φh1dµ, (8)

for all φ ∈ C0
b (X ), where C0

b (X ) is the space of bounded continuous functions on X , and h1 = τ
1+τ f +

1
1+τ g.

This means that the empirical distribution of the first n permuted samples converges in distribution to the

mixture of f and g, and since this is true also for the last m permuted samples, we can conclude that Zσ

asymptotically satisfies the null.

We will now extend this for general density ratios r. To this end, we first show that there exists a unique

density h which satisfies the null hypothesis while preserving the distribution of the combined data.

Lemma 4. There exists a unique density h such that

n

n+m
h+

m

n+m

rh∫
rhdµ

=
n

n+m
f +

m

n+m
g,

and it is of the form

h =
nf +mg

n+ λ0mr
,

for a suitable constant λ0 > 0 such that
∫
hdµ = 1.

This, together with the fact that λ0 = (
∫
rhdµ)−1 (proved in Lemma 4), further shows that H0 is

equivalent to f = h a.s., which is in turn equivalent to

mg

n+ λ0mr
=

λ0mrf

n+ λ0mr
a.s., with λ0 > 0 such that

∫
nf +mg

n+ λ0mr
dµ = 1.

This motivates the introduction, at the population level, of an IPM of the form

TF,r(f, g) := sup
φ∈F

∣∣∣∣∫ λ0rf − g

n/m+ λ0r
φ dµ

∣∣∣∣ ,
for a suitable function class F . It follows from Lemma 4 that we have TF,r(f, g) = 0 under the null, but in

order to have the reverse implication for a full characterisation of the null we need additional assumptions

on F . Following similar lines to Gretton et al. (2012), we prove the following lemma.

Lemma 5. Let F = {φ ∈ H : ∥φ∥H ≤ 1}, where H is a dense subset of C0
b (X ) with respect to ∥ · ∥∞, and

∥ · ∥H is a norm on H. Then TF,r characterises H0.

This naturally leads to the consistency of the DRPT based on the empirical version of TF,r, as the next

result shows. In the following, we will denote with N(A, δ, ∥·∥∗) the δ-covering number (see, e.g. Wainwright,

2019, Chapter 5) of the set A with respect to the norm ∥ · ∥∗.

Theorem 6. Fix α ∈ (0, 1) and H > ⌈1/α − 1⌉. Let H be a dense subset of C0
b (X ) with respect to

∥ · ∥∞, and suppose there exists a universal constant γ > 0 such that ∥ · ∥∞ ≤ γ∥ · ∥H. Further, suppose

11



N ({∥φ∥H ≤ 1}, δ, ∥ · ∥∞) is finite for all δ > 0 and define

T (z1, . . . , zn+m) = sup
∥φ∥H≤1

1

n

∣∣∣∣∣∣
n∑
i=1

λ̂mr(zi)

n+ λ̂mr(zi)
φ(zi)−

n+m∑
j=n+1

n

n+ λ̂mr(zj)
φ(zj)

∣∣∣∣∣∣ , (9)

where λ̂ satisfies
∑n+m
i=1 {n + λ̂mr(zi)}−1 = 1. Then, if there exist c, C > 0 such that c ≤ r(x) ≤ C for all

x ∈ X and n/m→ τ > 0, the DRPT based on T is consistent, meaning that whenever H0 is not true

P{DRPT based on T rejects H0} → 1 as n,m→ ∞.

It is worth noting that the assumption n ≍ m (i.e. that the sample sizes of the two groups are of the same

order) is commonly employed in the literature on permutation tests (e.g. Schrab et al., 2023), and two-sample

testing (e.g. Li and Yuan, 2024). Additionally, the condition ∥ · ∥∞ ≤ γ∥ · ∥H is not overly restrictive. For

instance, it is satisfied when H is an RKHS based on a uniformly bounded kernel. The proof of Theorem 6 is

based on the following lemma, which may be of independent interest, showing that the empirical distribution

of the first n permuted samples converges in distribution to the limiting version of hdµ defined in Lemma 4.

This extends (8) for bounded density ratios r.

Lemma 7. Let σ be sampled according to (3). Suppose n/m→ τ > 0 and that there exist constants c, C > 0

such that c ≤ r(x) ≤ C for all x ∈ X . Further, define h∞ = τf+g
τ+λ∞r for some λ∞ > 0 such that

∫
h∞dµ = 1.

Also define the empirical measure Ĥn,m =
∑n+m
i=1 {n + λ̂mr(Zi)}−1δZi

, where λ̂ > 0 is chosen such that∑n+m
i=1 {n+ λ̂mr(Zi)}−1 = 1. Then for all φ ∈ C0

b (X ) we have

(i)

E

( 1

n

n∑
i=1

φ(Zσ(i))−
∫
φdĤn,m

)2
 ≤ ∥φ∥2∞(c+ C)

c

n+m

n2
;

(ii)

1

n

n∑
i=1

φ(Zσ(i))
P−→
∫
φh∞dµ.

First, notice that
∑n+m
i=1 {n+ λ̂mr(Zi)}−1 = 1 is equivalent to saying that

n∑
i=1

λ̂mr(Zσ(i))

n+ λ̂mr(Zσ(i))
=

n+m∑
j=n+1

n

n+ λ̂mr(Zσ(j))
(10)

for all permutations σ ∈ Sn+m. This fact is useful throughout our proofs and allows us to see λ̂ as

a normalisation factor for r in any division of the empirical distribution Ĥn,m into two samples. Fur-

thermore, it is instructive to elaborate on the proof of part (i), as the underlying strategy is novel and

serves as a key component in the proof of other results, such as Theorem 9 below. To this end, let

Sn/n := 1
n

∑n
i=1 φ(Zσ(i))−

∫
φdĤn,m denote the relevant quantity where σ is sampled from (3), and define

Stn/n as its analogous counterpart in which σ is replaced by σt, the permutation at time t generated by

Algorithm 1. If the procedure is initialised at stationarity, we obtain E[(n−1Sn)
2] = E[(n−1Stn)

2] for all
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t ∈ N. This is particularly advantageous as we can leverage the Markov chain dynamics to find constants A

and B such that E[(n−1St+1
n )2 | Z, σt]− (n−1Stn)

2 ≤ A− B(n−1Stn)
2, where we now see that this left-hand

side has mean zero under stationarity. In proving this bound it is very convenient to use p̃tik,jk as defined

in (6) to relate this zero-mean difference to Stn/n. This justifies the claim in Remark 1 that, despite its more

complex algebraic form, p̃tik,jk is better suited than ptik,jk in (5) for the theoretical analysis of the DRPT.

Finally, while Lemma 7 is presented in terms of the first n data points of the permuted sample, the Law of

Large Numbers gives an immediate consequence for the last m data points. Indeed,

1

m

n+m∑
j=n+1

φ(Zσ(j)) =
1

m


n∑
i=1

φ(Xi) +

n+m∑
j=n+1

φ(Yj)−
n∑
i=1

φ(Zσ(i))


P−→ τ

∫
φfdµ+

∫
φgdµ− τ

∫
φh∞dµ =

∫
φ

rh∞∫
rh∞dµ

dµ,

since λ−1
∞ =

∫
rh∞dµ as shown in the proof of Lemma 4.

3.2 Construction of Shifted MMD

While Theorem 6 holds under mild assumptions, it is theoretical in nature and its practical utility depends

on whether the supremum can be explicitly computed and a closed-form expression for TF,r can be derived.

To make this feasible, we focus on the specific case where H is an RKHS, as examined in Gretton et al.

(2012). Under this setting, we establish the following representation for the IPM TF,r.

Proposition 8. Let H be an RKHS with measurable kernel k(·, ·) with
∫
X

√
k(x, x)λ0r(x)f(x)+g(x)

n/m+λ0r(x)
dµ(x) <∞,

where λ0 is such that
∫

nf+mg
n+λ0mr

dµ = 1. Then

T 2
F,r(f, g) =

(
sup

∥φ∥H≤1

∣∣∣∣∫ λ0rf − g

n/m+ λ0r
φ dµ

∣∣∣∣
)2

= EX,X′∼f

[
λ20r(X)r(X ′)k(X,X ′)

{n/m+ λ0r(X)}{n/m+ λ0r(X ′)}

]
+ EY,Y ′∼g

[
k(Y, Y ′)

{n/m+ λ0r(Y )}{n/m+ λ0r(Y ′)}

]
− 2EX∼f

Y∼g

[
λ0r(X)k(X,Y )

{n/m+ λ0r(X)}{n/m+ λ0r(Y )}

]
.

First, note that when r ≡ 1, it follows that λ0 = 1, leading to

T 2
F,r≡1(f, g) =

m2

(n+m)2
MMD2

k(f, g),

where MMDk(·, ·) denotes the Maximum Mean Discrepancy (MMD) based on the kernel k(·, ·) (see Gretton

et al., 2012, Equation (1) and Lemma 6). Consequently, our IPM TF,r, which we will now refer to as the

shifted-MMD and denote by MMDr,k(f, g), generalises the MMD to account for the presence of a shift factor,

while reducing to a scaled version of it in the case of a constant r. A similar quantity to MMDr,k(f, g),

but without the denominators and λ0, was proposed in Lee et al. (2024) for conditional two-sample testing,

where its definition was motivated by importance weighting. In contrast, we naturally derive MMDr,k(f, g)

from Lemma 4, and see that the presence of the denominator plays a crucial role, as it is linked to the

invariance under relabelling the samples in a similar spirit to Remark 2.

To ensure that MMDr,k(f, g) characterises the null hypothesis, in line with Lemma 5, restrictions on H
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must ensure that MMDr,k(f, g) = 0 if and only if H0 holds. This requirement has been extensively studied

in the statistical literature, and RKHS’s satisfying this property are referred to as characteristic, with their

defining kernels termed universal. For a comprehensive discussion see Sriperumbudur et al. (2010) and

references therein. Notably, RKHS’s induced by Gaussian and Laplacian kernels on Rd are characteristic.

Turning now to sample versions of the shifted-MMD, applying the same arguments as in Proposition 8

to empirical measures shows that the test statistic in (9) becomes

V (x1, . . . , xn, y1, . . . , ym) =
1

n2

n∑
i,j=1

λ̂2r(xi)r(xj)k(xi, xj)

{n/m+ λ̂r(xi)}{n/m+ λ̂r(xj)}

+
1

m2

m∑
i,j=1

k(yi, yj)

{n/m+ λ̂r(yi)}{n/m+ λ̂r(yj)}
− 2

nm

n∑
i=1

m∑
j=1

λ̂r(xi)k(xi, yj)

{n/m+ λ̂r(xi)}{n/m+ λ̂r(yj)}
, (11)

where λ̂ satisfies
∑n
i=1

λ̂mr(Xi)

n+λ̂mr(Xi)
=
∑n+m
i=n+1

n

n+λ̂mr(Yi)
. Ignoring the dependence on λ̂, this estimator is a

V-statistic and is asymptotically unbiased for MMD2
r,k(f, g) since, as we show in Lemma 12 in Appendix A.2,

we have λ̂
P−→ λ0. Following similar reasoning as in Theorem 6, the DRPT using (11) with a kernel k(·, ·)

from a characteristic RKHS is consistent, provided that ∥ · ∥∞ ≤ γ∥ · ∥H and N (∥φ∥H ≤ 1, δ, ∥ · ∥∞) is

finite for all δ > 0. The former condition is verified for uniformly bounded kernels, as the Cauchy-Schwarz

inequality and the representer theorem imply |φ(x)| = |⟨φ, k(·, x)⟩H| ≤
√
k(x, x)∥φ∥H. This is a common

assumption in the RKHS literature (see, e.g. Gretton et al., 2012, Definition 30 and subsequent results), and

it is satisfied by many standard choices of k(·, ·). The latter condition is also mild, and it is satisfied for

common kernels such as the exponential kernel (e.g. Yang et al., 2020, Lemma D.2).

3.3 Minimax rate optimality

While Theorem 6 shows the consistency of the DRPT under mild assumptions, we can further show its

minimax rate optimality when X = Rd under the extra assumption that λ0rf−g
n/m+λ0r

lies in a Sobolev ball. For

the theoretical analysis, it is more convenient to consider the test statistic

U(x1, . . . , xn, y1, . . . , ym) =
1

n2

n∑
i ̸=j=1

λ̂2r(xi)r(xj)kζ(xi, xj)

{n/m+ λ̂r(xi)}{n/m+ λ̂r(xj)}

+
1

m2

m∑
i ̸=j=1

kζ(yi, yj)

{n/m+ λ̂r(yi)}{n/m+ λ̂r(yj)}
− 2

nm

n∑
i=1

m∑
j=1

λ̂r(xi)kζ(xi, yj)

{n/m+ λ̂r(xi)}{n/m+ λ̂r(yj)}
, (12)

where kζ(·, ·) is a multivariate kernel with bandwidth ζ ≥ 1 which will be defined later. Note that apart from

a slightly unusual normalisation, namely 1
n2 and 1

m2 in place of 1
n(n−1) and 1

m(m−1) , and the dependence

on λ̂, (12) is essentially a U-statistic which serves as an estimator of MMD2
r,kζ

(f, g). Coming back to the

definition of kζ , we consider a characteristic kernel K : R → R belonging to L1(R) ∩ L2(R) ∩ L4(R) and

satisfying K(0) = 1 and, given a bandwidth ζ ≥ 1, we define a characteristic kernel on Rd by kζ(x, y) :=

ζd
∏d
i=1K (ζ(xi − yi)) for x, y ∈ Rd. For example, choosing KGauss(u) = e−u

2

recovers the Gaussian kernel

in Rd, while choosing KLap(u) = e−|u| yields the Laplace kernel. Further useful properties of kζ can be

found in the proof of Theorem 9. For notational convenience, we also define φζ(u) := ζd
∏d
i=1K

(
ζ ui

)
for

14



u ∈ Rd, so that kζ(x, y) = φζ(x− y) for all x, y ∈ Rd. Extensions to the case of separate kernels Ki(·) with
distinct bandwidths ζi along each dimension are straightforward and can be obtained by following similar

arguments as in Schrab et al. (2023). Moreover, the assumption that K(0) = 1 is not essential, as scaling it

by a positive constant does not affect the qualitative behaviour of our results; we adopt this assumption to

simplify both the computations and the notation.

We now characterise the optimality of the testing procedure within the minimax framework, aiming

to identify the smallest separation between the null and alternative hypotheses that allows for reliable

discrimination with controlled error. Smoothness is assumed under the alternative but not under the null,

as we already showed in Section 2 that the DRPT test guarantees uniform, non-asymptotic control of the

Type-I error without requiring any assumptions on the null distribution. For fixed r : X → R+ such that

0 < c ≤ r(x) ≤ C for all x ∈ X , and for ρ > 0, we are interested in testing

H0 : g ∝ rf vs. Hr
1 (ρ) :

√
n

m
∥ψr∥2 > ρ, (13)

where

ψr =
λ0mrf −mg

n+ λ0mr
and λ0 > 0 is such that

∫
nf +mg

n+ λ0mr
dµ = 1,

and aim to find the smallest value of ρ such that there exists a test with uniform error control. The choice

of this separation is motivated by the fact that
√
n/m∥ψr∥2 is invariant under relabelling the samples, by

analogy with Remark 2. We therefore believe this is the most natural form of separation in our setting.

Nonetheless, when r is uniformly bounded, alternative choices involving the L2 norm – such as ∥g − r̄f∥2
with r̄ = r(

∫
rfdµ)−1 – are also valid, and should be equivalent in terms of the minimax separation rate.

Let Ψ denote the collection of randomised tests based on the combined dataset (X1, . . . , Xn, Y1, . . . , Ym).

Each test is represented by a function φ : Xn ×Ym → [0, 1], where, upon observing (x1, . . . , xn, y1, . . . , ym),

the null hypothesis H0 is rejected with probability φ(x1, . . . , xn, y1, . . . , ym). Additionally, define Ψ(α) as

the subset of Ψ consisting of tests with size α, where α ∈ (0, 1). Define the d-dimensional Sobolev ball with

smoothness parameter s > 0 and radius L > 0 as

Ssd(L) :=
{
p ∈ L1(Rd) ∩ L2(Rd) :

∫
Rd

∥ξ∥2s2 |p̂(ξ)|2 dξ ≤ (2π)dL2

}
, (14)

where p̂ denotes the Fourier transform of p, that is, p̂(ξ) :=
∫
Rd p(x)e

−i⟨x,ξ⟩dx for all ξ ∈ Rd. Throughout

this section we will also assume m ≤ n ≤ τ m for some τ ∈ [1,∞), which is to say that n and m are of

the same order. For fixed r : X → R+ such that 0 < c ≤ r(x) ≤ C for all x ∈ X , we may then define the

minimax separation to be

ρ∗r ≡ ρ∗r (n,m, θ, α, β) := inf

{
ρ > 0 : α+ inf

φ∈Ψ(α)
sup

(f,g)∈Sr
θ (ρ)

EP (1− φ) ≤ α+ β

}
,

where P = P⊗n
f ⊗ P⊗m

g , θ = (d, τ,M, s, L) ∈ N+ × R≥1 × R3
+ and

Srθ (ρ) :=
{
(f, g) : max(∥f∥∞, ∥g∥∞) ≤M,

√
n

m
∥ψr∥2 > ρ and ψr ∈ Ssd(L)

}
. (15)
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We start by stating an upper bound on the minimax separation which is based on the fact that the DRPT

using the test statistic (12) with bandwidth ζ = n
2

4s+d has good power when ρ is sufficiently large.

Theorem 9. Let X = Rd and fix α, β ∈ (0, 1) such that α + β < 1. There exists a constant Cr =

Cr(c, C, θ, α, β) such that

ρ∗r ≤ Crn
−2s/(4s+d).

Regarding optimality, a matching lower bound has been established for the classical two-sample testing

problem over Sobolev balls (e.g. Li and Yuan, 2024, Theorems 3 and 5), showing that there exists a constant

c1 = c1(θ, α, β) such that

ρ∗r≡1 ≥ c1 n
−2s/(4s+d).

The minimax separation rate ρ∗r will typically depend on the specific choice of r. Nevertheless, we derive the

following matching lower bound under the assumptions that r is bounded above and below.

Theorem 10. Fix α, β ∈ (0, 1) such that α + β < 1 and suppose that s ∈ N+. For all fixed r : X → R+

satisfying 0 < c ≤ r(·) ≤ C, there exists a constant cr = cr(c, C, θ, α, β) such that

ρ∗r ≥ crn
−2s/(4s+d).

When r is uniformly bounded, the combined results of Theorems 9 and 10 demonstrate that ρ∗r ≍
n−2s/(4s+d), confirming that the DRPT with test statistic (12) achieves optimality. Future work could study

the dependence of ρ∗r on r, though by analogy with the goodness-of-fit testing problem for densities, this

is likely to be technically demanding. Indeed, it is known (e.g. Balakrishnan and Wasserman, 2019) that

minimax rates of convergence for testing the null hypothesis that f = f0 given X1, . . . , Xn ∼ f intricately

depend on the specific choice of f0, with the hardest version of the problem being when f0 is a uniform

density. Although the simulations in Section 5.1 and the results for binary data in Appendix B seem to

suggest that the hardest shifts to test are those closer to r ≡ 1, it is still unclear if this is the case in full

generality.

Furthermore, the proof of Theorem 10 relies on relating the testing problem (1) to the task of testing

whether f = g under a biased sampling scheme in which, rather than observing samples directly from f

and g, one observes samples from densities proportional to w1f and w2g, where w1 and w2 are positive

functions satisfying w2/w1 = r. This setting, known as two-sample testing under biased sampling schemes,

has been studied in the statistical literature (see Kang and Nelson, 2009, and the references therein), and

asymptotically valid and powerful tests have been proposed. From a theoretical standpoint, we believe this

alternative formulation is equivalent to our original problem in terms of minimax separation, and that similar

techniques to those presented in this section may be used to establish non-asymptotic results in that setting.

Finally, we note that the assumption s ∈ N+ is common in the statistical literature (Li and Yuan,

2024), and plays a critical role in the lower bound construction. In particular, it ensures that the bump

functions introduced in Lemma 14 in Appendix A.2 are orthogonal with respect to the Sobolev inner product

⟨ϕ1, ϕ2⟩Ss
d
:=
∫
Rd ∥ξ∥2s2 ϕ̂1(ξ) ϕ̂2(ξ) dξ. This orthogonality holds when s ∈ N+ because the bump functions

are supported on disjoint sets. However, this argument breaks down for general s > 0, as disjoint support

no longer guarantees orthogonality in the Sobolev inner product. Extending the construction to non-integer
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smoothness may still be possible using techniques similar to those developed in Butucea (2007) and Albert

et al. (2022).

4 Extensions

4.1 Density ratio permutation test with unknown shift function

We move beyond the case of a known shift factor, and consider the harder problem of testing

HR
0 : there exists r⋆ ∈ R such that g ∝ r⋆ f,

where R is a suitable function class. This can serve as an important preliminary tool for model selection.

For instance, it is common to assume that the density ratio belongs to a specific parametric family of

functions (Qin, 1998; Kanamori et al., 2010a), with maximum likelihood estimation used for inference. See

Qin (1998) and the references therein for a comprehensive overview of applications that rely on this modelling

assumption.

The idea here is to split the sample in two disjoint subsets Zestim and Ztest: we use Zestim to find a good

estimate r̂ of r⋆, and Ztest to perform the DRPT defined in Section 2 using r̂ as shift function. In order to

find the estimate r̂, we will leverage existing results in the field of Density Ratio Estimation (DRE). A naive

approach is to estimate the two densities separately and take the ratio as the proposed estimator, but more

direct approaches are known to perform better in practice. Indeed, significant efforts have been made in the

recent literature to develop such direct estimators. Various methodologies have been proposed, including

the moment matching approach (Gretton et al., 2009b), the probabilistic classification approach (Qin, 1998;

Cheng and Chu, 2004; Bickel et al., 2007), and the ratio matching approach (Tsuboi et al., 2009; Kanamori

et al., 2010a, 2009, 2012; Sugiyama et al., 2008; Yamada and Sugiyama, 2010). Additionally, other methods

have utilised M-estimators combined with non-asymptotic variational characterisations of Csiszár-divergences

(Nguyen et al., 2008; Sugiyama et al., 2012). Recent advances have focused on improving robustness (Liu

et al., 2017; Choi et al., 2021, 2022) and accommodating missing values (Givens et al., 2023). For a more

comprehensive review of DRE methods, we refer readers to Kanamori et al. (2012) and Sugiyama et al.

(2012), along with the references therein.

We first prove that if HR
0 is satisfied and r̂ is a good approximation of the true r⋆, then the excess Type-I

error of the DRPT is bounded by the total variation distance between the product measures of the normalised

versions of r̂ f and r⋆ f . Recall that for any two distributions P1, P2 defined on the same probability space,

the total variation distance is defined as TV (P1, P2) = supA |P1(A)− P2(A)|, where the supremum is taken

over all measurable sets. In the result below, we assume that both the approximation r̂ of the true r⋆ and

the test statistic T : Xn × Ym → R are deterministic, meaning that they are selected independently of Z.

Proposition 11. Assume HR
0 is true, and let r⋆ be such that g ∝ r⋆ f . For fixed H ≥ 1, let Z(1), . . . , Z(H)

be copies of Z generated from the DRPT (4) or from the exchangeable sampler (Algorithm 2) with fixed

parameter S ≥ 1 using an approximation r̂ of the true r⋆. Then, for all α ∈ (0, 1) we have

P{p ≤ α} ≤ α+TV
(
{r̄ f}⊗m, {r̄⋆ f}⊗m

)
,
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where r̄ =
(∫
r̂fdµ

)−1
r̂, r̄⋆ =

(∫
r⋆fdµ

)−1
r⋆ and p is the p-value computed as in (2).

This result ensures that, if r̂ is a good approximation to r⋆, then the DRPT will experience at most a mild

increase in its Type-I error. Arguing as for the CPT in Berrett et al. (2020, Theorem 4), Proposition 11 is a

worst-case result, established with respect to an arbitrary test statistic T , which may be chosen adversarially

to be maximally sensitive to errors in estimating the true r⋆. In practice, however, sensible choices of T—such

as those in Section 3—may be more robust than the theoretical result implies. Finally, observe that although

the total variation is asymmetric due to the presence of m only, this symmetry can be restored by taking

the reciprocal of r⋆ and arguing in a manner similar to Remark 2. However, since we have assumed n ≍ m

throughout the paper, we avoid this additional technicality, as it does not affect the qualitative behaviour of

the result.

Regarding the construction of an approximation r̂ of r⋆, although in certain settings (such as when the

data satisfy the covariate shift assumption) we may have access to a large sample of unlabelled data sufficient

to estimate the unknown density ratio, in general we lack such resources and may have to rely on the sample-

splitting procedure introduced above. More precisely, assuming n = m for simplicity of presentation, and

letting Z = (X1, . . . , Xn, Y1, . . . , Yn) denote the combined sample, we split Z into two disjoint subsets

Zestim = (X1, . . . , XN , Y1, . . . , YN ) and Ztest = (XN+1, . . . , Xn, YN+1, . . . , Yn),

with 1 ≤ N < n, and use Zestim to compute an estimator r̂ of r⋆, and Ztest to perform the DRPT based on

r̂. Now, for Proposition 11 to have practical implications, we need to verify that there are settings where

we can choose N appropriately so that r⋆ can be estimated with high accuracy and the excess Type-I error

is guaranteed to be small. More formally, we require that TV
(
{r̄ f}⊗(n−N), {r̄⋆ f}⊗(n−N)

)
= oP(1). To

establish this in certain settings of interest, it is possible to leverage results from the DRE literature, which

offers a wide range of tools for quantifying how close r̄ f is to r̄⋆ f under various pseudo-metrics. As an

illustrative example, we will make use of Theorem 2 from Nguyen et al. (2008). However, we note that other

approaches, such as Sugiyama et al. (2008, Theorem 1 and Example 1) and Kanamori et al. (2012, Theorem

2), may yield similar results under comparable conditions.

Example 1. Suppose R = Ssd(L), the Sobolev ball introduced in (14), with integer s satisfying s > d/2. Let

r̂ represent the M-estimator, referred to as estimator E1, for r⋆ ∈ R as introduced in Nguyen et al. (2008).

Now, if 0 < c ≤ r(·) ≤ C for all r ∈ R, Theorem 2 in Nguyen et al. (2008) and the remarks thereafter ensure

that
∫
(
√
r̄⋆f −

√
r̂f)2dµ = OP(N

− 2s
2s+d ). As a result, writing H2(p, q) = 2(1 −

∫ √
pqdµ) for the squared

Hellinger distance between densities p and q, we have

H2 ({r̄ f}, {r̄⋆ f}) =
∫
(
√
r̄⋆f −

√
r̄f)2dµ ≤ 2

∫
(
√
r̄⋆f −

√
r̂f)2dµ+ 2

∫
(
√
r̂f −

√
r̄f)2dµ

= 2

∫
(
√
r̄⋆f −

√
r̂f)2dµ+ 2

(√∫
r̂fdµ− 1

)2
dµ ≤ 4

∫
(
√
r̄⋆f −

√
r̂f)2dµ = OP(N

− 2s
2s+d ),

where in the last inequality we used the Cauchy-Schwarz inequality. This, together with the fact that
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TV(p, q) ≤
√

H2(p, q) and H2(p⊗n, q⊗n) = 2{1− (1−H2(p, q)/2)n}, implies that

TV
(
{r̄ f}⊗(n−N), {r̄⋆ f}⊗(n−N)

)
≤
√
H2
(
{r̄ f}⊗(n−N), {r̄⋆ f}⊗(n−N)

)
=
√
2
{
1− (1−H2 ({r̄ f}, {r̄⋆ f}) /2)(n−N)

}
≤
√
(n−N) H2 ({r̄ f}, {r̄⋆ f}) + oP(1) = OP

(√
(n−N)N− 2s

2s+d

)
,

where in the last inequality we used that fact that (1 − x)n ≥ 1 − nx for n ∈ N and x ≤ 1. As a result, we

have TV
(
{r̄ f}⊗(n−N), {r̄⋆ f}⊗(n−N)

)
≲
√
(n−N)N− 2s

2s+d w.h.p., and expect it to vanish as long as N is

taken sufficiently large, i.e. n≪ N
2s

2s+d .

Related results in the literature can be leveraged to derive analogous guarantees for alternative estimators

of r⋆ across different settings. Broadly speaking, theoretical insights emphasise the importance of choosing

the estimation sample size N to be significantly larger than the testing sample size n−N in order to keep

the excess Type-I error low. Nonetheless, empirical findings from Section 5 suggest that less extreme splits

may perform just as well in practice.

4.2 Conditional two-sample testing

As discussed in the introduction, the DRPT can be applied to the conditional two-sample testing problem,

which we now revisit. Consider two independent samples: (X
(1)
i , Y

(1)
i )n1

i=1 drawn from a joint distribution

P
(1)
XY , and (X

(2)
i , Y

(2)
i )n2

i=1 drawn from another joint distribution P
(2)
XY , both supported on a product space

X ×Y. Here, P
(1)
Y |X and P

(2)
Y |X represent the conditional distributions of Y (1) given X(1) and Y (2) given X(2),

while P
(1)
X and P

(2)
X are the corresponding marginals of X(1) and X(2). The objective is to test whether the

conditional distributions are equal, i.e. P
(1)
X {P (1)

Y |X(·|X) = P
(2)
Y |X(·|X)} = 1. Notable contributions to this

area include works such as Hu and Lei (2020), Chatterjee et al. (2024), Chen and Lei (2025), Yan et al. (2024),

and Huang et al. (2024). Recently, Lee et al. (2024) introduced two general methodologies to address this

problem. The first approach converts any conditional independence test into a conditional two-sample test

while preserving the original test’s asymptotic properties. The second transforms the problem into comparing

marginal distributions via estimated density ratios, enabling the use of established marginal two-sample

testing methods. Assuming the distributions have densities, the null hypothesis f
(1)
Y |X(y|x) = f

(2)
Y |X(y|x) can

be reformulated as

f
(2)
XY (x, y) = {f (2)X (x)/f

(1)
X (x)}f (1)XY (x, y), (16)

where f
(1)
XY and f

(2)
XY are the joint densities. This approach in Lee et al. (2024) aligns with Section 4.1 in

that part of the data is used to estimate the marginal density ratio, while the remaining data is used for

testing. This is achieved either using a classifier-based test statistic or a linear-time MMD statistic, both

reweighted according to the marginal importance, which are proven to result in asymptotically valid tests.

In light of (16), our methodology can be adapted to address the conditional two-sample testing problem.

This is achieved by first estimating the marginal density ratio and then applying the DRPT, using this

estimate as the shift factor. The key innovation of this approach lies in its calibration via permutations,

where the only excess in Type-I error arises from the estimation of the marginal density ratio. A detailed
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empirical comparison between this methodology and those proposed in Lee et al. (2024) is provided in

Section 5.2.

5 Simulations and real-data applications

5.1 Synthetic data

In this section, we empirically validate the performance of the DRPT on synthetic data. For the first

setting, we set Pf = N(0, 1) and define Pg = (1 + η)−1N(0, 19 ) + η(1 + η)−1 Exp(1) for η ∈ {0, . . . , 0.25}.
Clearly, for η = 0, g satisfies the null hypothesis with r(x) = e−4x2

, while larger values of η correspond to

greater departures from the null. In the simulations shown by the purple line, we implement the DRPT

using the empirical shifted-MMD test statistic defined in (12) combined with the Gaussian kernel KGauss.

The bandwidth of the kernel is calibrated using the median heuristic proposed in Gretton et al. (2012). We

compare our approach with a permutation test based on the classical MMD (shown by the green line), applied

to the data Y1, . . . , Ym and a sample from rf , which is generated from X1, . . . , Xn using rejection sampling.

Furthermore, we also consider a similar setting (shown by the orange and blue lines) in which Pf = N(0, 1)

and Pg = (1 + η)−1N(0, 13 ) + η(1 + η)−1 Exp(1), which means that the null hypothesis (1) is satisfied for

r′(x) = e−x
2

. All four simulations are conducted for η ∈ {0, . . . , 0.25}, fixing H = 99, n = m = 250, and

S = 50. Each test is repeated 500 times for every setting, and the average decision is reported as an estimate

of the power function. The results are presented in Figure 1. The DRPT demonstrates superior performance

compared to the rejection sampling-based procedure, which is to be expected due to the reduction in effective

sample size inherent in such resampling methods. This justifies our choice to forego rejection-sampling

schemes and utilise the full sample directly. Furthermore, less extreme shifts, such as r′, seem harder to test,

as the DRPT shows greater power with more peaked choices like r.

Moving beyond univariate settings, Figure 2 shows the performance of the DRPT in the case of bivariate

data. Here, we let Pq be an absolutely continuous distribution on [0, 1] with density q(x) = 2x. We then

choose Pf = Unif([0, 1]2) and Pg = (1+η)−1P⊗2
q +η(1+η)−1 Beta( 12 ,

1
2 )

⊗2. This implies that, when η = 0, g

satisfies the null hypothesis with r(x, y) = 4xy, while larger values of η correspond to greater departures from

the null. As before, we implement the DRPT using the U-statistic (12) combined with the Gaussian kernel

KGauss, with the bandwidth calibrated using the median heuristic. The simulation (shown in purple) is

conducted for η ∈ {0, . . . , 0.9}, fixing H = 99, n = m = 250, and S = 50, and repeating the test 500 times in

each setting. We compare this setting with a similar one (shown in orange), where we fix Pf = Unif([0, 1]2)

and Pg = (1 + η)−1Pq ⊗ Unif([0, 1]) + η(1 + η)−1 Beta( 12 ,
1
2 )

⊗2; this implies that the null is satisfied for

r′(x, y) = 2x when η = 0. The results shown in Figure 2 are consistent with the earlier conjecture that shifts

that are closer to being constant are more difficult to test.

Table 1 provides empirical evidence for the claim in Section 4.1 that approximating r⋆ introduces only

a modest inflation in Type-I error, provided the estimator r̂ is sufficiently accurate and the test statistic

T is appropriately chosen. We consider the setting where Pf = Unif([0, 1]) and Pg = Pq, so that the null

hypothesis holds with r⋆(x) = 2x. Testing sample sizes are fixed at n = m = 250, while r⋆ is estimated using

an independent sample of size N ∈ {100, 200, 1000, 2000}, drawn under the null. Estimation is performed

using either linear logistic regression (LL) (Sugiyama et al., 2010) or the uLSIF estimator (Kanamori et al.,
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2009). The table reports the average Type-I error across 200 repetitions of the DRPT, using either the true

r⋆ or an estimate thereof, and the empirical shifted-MMD with the Gaussian kernel as the test statistic. The

results indicate that Type-I error inflation is non-negligible when the LL estimator is used for r⋆. This is

likely due to the parametric nature of the estimator, which is misspecified for the true r⋆, resulting in no

improvement as the sample size N increases. In contrast, the ULSIF estimator does get closer to r⋆ as N

grows, and the test size seems to approach the nominal level asymptotically.

Figure 1: Purple: simulation of the DRPT
based on (12) using the Gaussian kernel; here

r(x) = e−4x2

. Orange: same setting but with

r′(x) = e−x2

. Green and blue: alternative ap-
proaches based on rejection sampling.

Figure 2: Purple: simulation of the DRPT
based on (12) using the Gaussian kernel in the
case of bivariate data on the unit square; here
r(x, y) = 4xy. Orange: same setting but with
r′(x, y) = 2x.

Method N

100 200 1000 2000

LL 0.520 0.250 0.065 0.140

uLSIF 0.095 0.055 0.085 0.065

True 0.050 0.050 0.050 0.050

Table 1: Type-I error inflation when estimating
the density ratio using LL and uLSIF; the true
ratio is r⋆(x) = 2x; the DRPT was performed
using (12) with the Gaussian kernel.

Figure 3: Discrete DRPT based on the ap-
proach in Section 2.1 for binary data with vary-
ing sample sizes. The test statistic is (11) with
the collision kernel.
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Figure 4: Purple: discrete DRPT using (12)
with the collision kernel. Blue: discrete DRPT
using (11) with the collision kernel. Green:
alternative approach based on rejection sam-
pling. Here r = (1, 3, 3, 10).

Figure 5: Purple: discrete DRPT using (12)
with the collision kernel. Blue: discrete DRPT
using (11) with the collision kernel. Here r =
(1, 1, 1, 1).

We now turn to discrete settings and evaluate the performance of our RKHS-based methodology, lever-

aging the discrete DRPT approach introduced in Section 2.1. In this regard, when using the collision kernel

kcoll(x, y) :=
∑J
j=0 1{x = j}1{y = j} we can write the V-statistic (11) and the U-statistic (12) as

V (x1, . . . , xn, y1, . . . , ym) =

J∑
j=0

1

(n/m+ λ̂rj)2

{
λ̂rj
n

n∑
i=1

1{xi=j} −
1

m

m∑
i=1

1{yi=j}

}2

,

and

U(x1, . . . , xn, y1, . . . , ym) = V −
J∑
j=0

λ̂2r2j

(n/m+ λ̂rj)2

{
1

n2

n∑
i=1

1{xi=j}

}
−

J∑
j=0

1

(n/m+ λ̂rj)2

{
1

m2

m∑
i=1

1{yi=j}

}
,

which shows that it is sufficient to draw (Np
Y,0, . . . , N

p
Y,J)|Z() using (7) through the R-function rMFNCHypergeo

without the need of using Algorithm 1, drastically reducing the computational cost of the DRPT. In the

case of binary data, we consider the test statistics (11), fix n = 100 and m ∈ {100, 200, 500, 2000}, r = 3

and sample Xi
i.i.d.∼ Ber

(
1
2

)
for i ∈ [n] and Yj

i.i.d.∼ Ber
(
(1− η) 34 + η

4

)
for j ∈ [m] with η ∈ {0, . . . , 0.9}. The

null hypothesis holds for η = 0, with increasing values of η representing greater deviations from the null.

We used H = 99 and, for each η, repeated the simulation 5000 times. The results, illustrated in Figure 3,

indicate that our methodology performs well even with unbalanced sample sizes, achieving greater power in

the most unbalanced case, which corresponds to the largest sample sizes in this setting.

We extended our analysis to a discrete setting with larger finite support. Specifically, we set J =

3 and n = m = 250, where the Xi’s were independently drawn from a multinomial distribution over

{0, 1, 2, 3} with probabilities pX = ( 18 ,
1
8 ,

3
8 ,

3
8 ), and the Yj ’s were sampled from a multinomial distribution

with probabilities pY = ( 1
43 ,

3
43 ,

9+25η
43 , 30−25η

43 ), with η ∈ {0, . . . , 0.4}. When η = 0, the null hypothesis
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holds with r = (1, 3, 3, 10); increasing η corresponds to larger deviations from the null. We fixed S = 50

and repeated each experiment 5000 times, comparing three different methodologies in this setting. Figure 4

shows the results. The DRPT using the V-statistic (11) and the U-statistic (12) with the collision kernel

kcoll(x, y) :=
∑J
j=0 1{x = j}1{y = j} are shown in blue and purple, respectively. The classical MMD

permutation test combined with rejection sampling, as described earlier, is shown in green. Overall, the

results show a notable drop in power when rejection sampling is used. Furthermore, the tests based on (11)

and (12) are nearly indistinguishable, as expected, since the difference V −U vanishes asymptotically as the

sample size increases. Finally, Figure 5 presents the analogue of Figure 4 for a related testing problem with

a less extreme shift. Specifically, the shift vector is r = (1, 1, 1, 1), so the problem reduces to the classical

two-sample testing setting. The Xi’s are drawn i.i.d. from the uniform distribution on {0, 1, 2, 3}, that is,

p′X =
(
1
4 ,

1
4 ,

1
4 ,

1
4

)
, while the Yj ’s are sampled from a multinomial distribution with p′Y = ( 14 ,

1
4 ,

1+γ
4 , 1−γ4 ),

where γ = 25η
43

(
1√
3
+ 1√

10

)
. This specific choice of γ ensures that D(pX , pY ) = D(p′X , p

′
Y ) for all values of η,

where the separation D(f, g) is defined in Appendix B. The empirical results in Figure 5 appear to support

the earlier conjecture that nearly uniform shifts are, in general, more difficult to detect.

5.2 Real-world application

5.2.1 Stroop-effect and New-York-frisk datasets

When working with simple classes of distributional shifts, our hypothesis tests can be inverted in the usual

way to furnish confidence sets, offering useful insights to practitioners. To illustrate this, we consider two

practical scenarios, beginning with the well-known Stroop effect (Stroop, 1935). This refers to the cognitive

interference observed when an individual attempts to name the colour of the ink of a word that spells a

different colour (incongruent), compared to naming the colour of the ink when the word and ink colour

match (congruent). Typically, reaction times and error rates differ significantly between these congruent

and incongruent conditions, indicating distinct underlying distributions for concordant (congruent) and non-

concordant (incongruent) stimuli. The data set consists of observations from 131 individuals, each with two

recorded values: X, representing the time taken to name a set of concordant pairs (i.e., colour-word-match)

and Y , the time taken to name an equal number of discordant pairs (i.e., colour-word mismatched). We

standardise the data, and test the hypothesis g(y) ∝ ey/ηf(y) for varying η ∈ {0.01, . . . , 0.3} using the DRPT

based on the U-statistic (12) combined with the Gaussian kernel KGauss. The results in Figure 6 show that

there are values for which such modelling assumptions cannot be ruled out, especially in a neighbourhood

of 0.2.

In a similar spirit, we also consider the New-York-frisk dataset for the years 2011 and 2012, which contains

detailed records of police stop-and-frisk encounters, including demographic, contextual, and outcome-related

variables. Although the dataset contains a wide range of features, we limit our analysis to stops recorded as

criminal possession of a weapon and retain only the indicators reflecting whether different types of weapons

were found during the frisk. These indicators are then combined into a single binary variable indicating

whether any weapon was found. The sample is then divided into two groups based on whether the individual

is identified as Black or White, resulting in two binary datasets: X, where a value of 1 indicates weapon

possession among Black individuals, and Y , where a value of 1 indicates weapon possession among White

individuals. The X sample contains 82,626 observations, whereas the Y sample comprises 6,383 observations.
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Figure 6: p-values of the DRPT testing g(y) ∝
ey/ηf(y) for η ∈ {0.01, . . . , 0.3} on the Stroop
data. The DRPT was performed using (12)
with the Gaussian kernel.

Figure 7: p-values of the discrete DRPT testing
w1/w0 = rb1/b0 for r ∈ {0.1, . . . , 7} on the NY-
Frisk datasets for the years 2011/2012 (blue)
and 2015/2016 (brown). The DRPT was per-
formed using (11) with the collision kernel.

A conjecture in the literature, illustrated in Figure 1(b) of Goel et al. (2016) and recalled in Section 8.1 in

Koh et al. (2020), suggests that Black individuals are approximately five times less likely to possess a weapon

compared to White individuals. We examine this claim using the discrete DRPT using (11) as test statistic.

Specifically, when testing the relation w1/w0 = rb1/b0 for r ∈ {0.1, . . . , 7}, where w1 and b1 denote the

probabilities of weapon possession for White and Black individuals respectively, the DRPT does not reject

the null hypotheses for values of r between 5 and 6. This supports the claim that, conditional on being

frisked, Black individuals in 2011–2012 were about five times less likely than White individuals to be found

carrying a weapon, even though they were frisked more frequently. We also considered analogous datasets

for the years 2015 and 2016, which, after applying the same data cleaning process, contain the records of

138 White individuals and 2,298 Black individuals who were frisked on suspicion of carrying a weapon. The

reduction in sample sizes, along with the results in Figure 7, where values of r between 2 and 4 are not

rejected, may suggest a change in frisking or stopping practices between 2011 and 2016.

5.2.2 Conditional two-sample testing on the diamonds datasets

We now assess the performance of the DRPT in the conditional two-sample testing problem, as outlined in

Section 4.2. Our analysis utilises the diamonds dataset, which is available in the R package ggplot2, and

contains 53,490 observations with 10 features, including price, carat, clarity, and colour. Following Lee et al.

(2024), we designate the price variable as Y and use the six numerical variables (carat, depth, table, x, y,

z) as predictors X. Prior to the analysis, we standardise both X and Y . To introduce covariate shift, we

implement biased sampling procedures: X(1) is sampled uniformly from the original feature space, while

X(2) is sampled with probabilities proportional to exp(−x21), with x1 representing the first feature of X.

Under the null hypothesis, the response variable Y is uniformly sampled for both Y (1) and Y (2). Under the

alternative hypothesis, Y (1) remains uniformly sampled, while Y (2) is sampled with probabilities proportional
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to exp(−y), where y corresponds to the dataset’s Y values. We compare our methodologies against several

hypothesis testing approaches introduced in Lee et al. (2024): the single-split classifier-based test (CLF)

and its cross-fit version (†CLF), and the linear-time Maximum Mean Discrepancy test (MMD-l) alongside

its cross-fit counterpart (†MMD-l). Additionally, we include the Conformal Prediction (CP) test based on

conformity scores (Hu and Lei, 2020), and the Debiased Conformal Prediction (DCP) test, which enhances

CP through Neyman orthogonality and cross-fitting (Chen and Lei, 2025). Results are presented in Table 2,

demonstrating that our method achieves effective control of the Type-I error and exhibits competitive power

compared to other methodologies. In our simulation, we used an 80/20 split, allocating 80% of the data to

marginal density ratio estimation and 20% to testing. Consistently with all the other methods, the marginal

density ratio is estimated either with the linear logistic (LL) or the kernel logistic (KLR) regression. The

testing phase was performed using the U-statistic (12) combined with the Gaussian kernel KGauss.

Table 2: Simulation results for the conditional two-sample testing problem on the diamonds dataset.

Estimator Hypothesis Test 200 400 800 1200 1600 2000

LL Null CLF 0.0900 0.0650 0.0750 0.0450 0.0675 0.0425
LL Null CP 0.0650 0.0875 0.0925 0.0575 0.1100 0.0925
LL Null †CLF 0.0950 0.0675 0.0850 0.0750 0.0450 0.0675
LL Null †MMD-l 0.0700 0.0700 0.0675 0.0550 0.0750 0.0625
LL Null MMD-l 0.0750 0.0650 0.0750 0.0500 0.0575 0.0575
LL Null DCP 0.0375 0.0400 0.0350 0.0425 0.0325 0.0400
LL Null DRPT 0.0600 0.0550 0.0850 0.0600 0.0500 0.0350

LL Alternative CLF 0.1575 0.2050 0.2650 0.3600 0.3925 0.4800
LL Alternative CP 0.2950 0.5275 0.6900 0.8700 0.9050 0.9300
LL Alternative †CLF 0.2425 0.3675 0.4700 0.6225 0.6575 0.7575
LL Alternative †MMD-l 0.0975 0.1100 0.0900 0.1075 0.1125 0.1275
LL Alternative MMD-l 0.0650 0.0675 0.0850 0.0825 0.0975 0.0850
LL Alternative DCP 0.1750 0.4150 0.6750 0.7925 0.8250 0.7950
LL Alternative DRPT 0.1500 0.1800 0.4150 0.5450 0.6350 0.7150

KLR Null CLF 0.0750 0.0575 0.0675 0.0350 0.0475 0.0450
KLR Null CP 0.0450 0.0675 0.0575 0.0400 0.0675 0.0500
KLR Null †CLF 0.0825 0.0375 0.0475 0.0400 0.0425 0.0500
KLR Null †MMD-l 0.0200 0.0450 0.0675 0.0650 0.0550 0.0550
KLR Null MMD-l 0.0600 0.0625 0.0725 0.0575 0.0550 0.0600
KLR Null DCP 0.0275 0.0150 0.0275 0.0175 0.0275 0.0200
KLR Null DRPT 0.0400 0.0350 0.0600 0.0500 0.0600 0.0300

KLR Alternative CLF 0.0975 0.1525 0.2600 0.3550 0.3675 0.4450
KLR Alternative CP 0.3100 0.5450 0.7450 0.9025 0.9600 0.9725
KLR Alternative †CLF 0.1675 0.2650 0.3900 0.5750 0.6275 0.7150
KLR Alternative †MMD-l 0.0700 0.0625 0.0950 0.1000 0.1225 0.1425
KLR Alternative MMD-l 0.0725 0.0675 0.0800 0.0900 0.0950 0.1050
KLR Alternative DCP 0.2425 0.4325 0.6850 0.8175 0.9200 0.9700
KLR Alternative DRPT 0.1250 0.1750 0.3750 0.5000 0.6300 0.6650
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Appendices

Appendix A provides the proofs for all results stated in the main text, while Appendix B contains additional

results about the power of the DRPT in the discrete, finite-support setting introduced in Subsection 2.1.

Appendix A Proofs

A.1 Proofs for Section 2

Proof of Theorem 1. From the discussion that led to Equation (4) we know that, under H0, the true data

vector Z and the DRPT copies Z(1), . . . , Z(H) are permutations of Z() obtained via i.i.d. draws from (4),

conditional on Z(). Therefore, after marginalising over Z(), the H + 1 random variables
(
Z,Z(1), . . . , Z(H)

)
are exchangeable. This is sufficient to prove finite-sample validity for every test statistic T .

Proof of Proposition 2. The proof consists of simply checking the detailed balance equations for the Markov

chain defined by the algorithm. Denote with P the collection of allK couples of indices {(i1, j1), . . . , (iK , jK)}
such that (i1, . . . , iK) contains distinct elements from [n], and (j1, . . . , jK) contains distinct elements from

{n + 1, . . . , n +m}. For any τ ∈ P and any permutations p, p′, we write p ∼τ p′ if p can be transformed

to p′ by swapping any subset of the pairs in τ . We now compute the transition probability matrix of the

Markov chain defined by Algorithm 1. Every probability sign has to be intended conditionally on Z(). For

all t ∈ N+ and any permutations p, p′, we have

P {Pt = p′ | Pt−1 = p} =
1

|P|
∑
τ∈P

P {Pt = p′ | Pt−1 = p, τt = τ} ,

since at each time t, Step 3 of the algorithm corresponds to drawing τt ∈ P uniformly at random. Next, given

τt = τ := {(i1, j1), . . . , (iK , jK)} and Pt−1 = p, it must be the case that Pt satisfies Pt ∼τ p by definition of

Steps 4-5 of the algorithm. In light of the definition of the odds ratio for each Btik,jk in (5), we see that for

any p′, p′′ ∼τ p, we have

P {Pt = p′ | Pt−1 = p, τt = τ}
P {Pt = p′′ | Pt−1 = p, τt = τ}

=
∏

j∈{j1,...,jK}

r(Z(p′(j)))

r(Z(p′′(j)))
=

∏
j∈{j1,...,jK}

r(Z(p′(j)))

r(Z(p′′(j)))

∏
j /∈{j1,...,jK}

r(Z(p′(j)))

r(Z(p′′(j)))

=
∏

j∈{n+1,...,n+m}

r(Z(p′(j)))

r(Z(p′′(j)))
=

P {P = p′}
P {P = p′′}

, (17)
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where in the second equality we used the fact that r(Z(p′(j)))/r(Z(p′′(j))) = 1 for all j /∈ {j1, . . . , jK}, while
in the last step we used the definition of the distribution (4) conditional on Z(). Therefore,

P {Pt = p′ | Pt−1 = p} =
1

|P|
∑
τ∈P

1 {p′ ∼τ p} · P {P = p′}∑
p′′ 1 {p′′ ∼τ p} · P {P = p′′}

.

This, together with the fact that ∼τ defines an equivalence relation on P, shows that

P{P = p} · P {Pt = p′ | Pt−1 = p} =
1

|P|
∑
τ∈P

P{P = p} · 1 {p′ ∼τ p} · P {P = p′}∑
p′′ 1 {p′′ ∼τ p} · P {P = p′′}

=
1

|P|
∑
τ∈P

P {P = p′} · 1 {p ∼τ p′} · P{P = p}∑
p′′ 1 {p′′ ∼τ p′} · P {P = p′′}

= P {P = p′} · P {Pt = p | Pt−1 = p′} . (18)

This verifies the detailed balance equations, and so the Markov chain is reversible and has (4) as stationary

distribution. Moreover, since r(x) is assumed to be positive for all x ∈ X , it follows that the chain is

aperiodic and irreducible, ensuring the uniqueness of the stationary distribution.

Proof of Proposition 3. The proof relies fundamentally on the reversibility of the Markov chain defined in

Algorithm 1, a property established in the proof of Proposition 2. This reversibility permits an alternative

but equivalent sampling procedure under the null hypothesis: we may first sample P∗ from distribution (4)

conditional on Z(), and subsequently generate (P, P (1), . . . , P (H)) through H + 1 independent applications

of Algorithm 1, each running for S steps and initialised at P∗. The independence of these runs, combined

with their shared initialisation point P∗, ensures that (P, P (1), . . . , P (H)) are independently and identically

distributed when conditioned on P∗ and Z(). This conditional independence directly implies their exchange-

ability, and concludes the proof.

A.2 Proofs for Section 3

Proof of Lemma 4. We begin by proving that there exists a unique λ0 such that h = nf+mg
n+λ0mr

is a density

function. Define the function

F :

R+ → R+

λ 7→
∫
nf+mg
n+λmrdµ

(19)

which can easily be seen to be continuous. It also straightforward to see that F is strictly decreasing, since

if λ2 > λ1 > 0 we have
nf(x) +mg(x)

n+ λ2mr(x)
≤ nf(x) +mg(x)

n+ λ1mr(x)
for all x ∈ X ,

and this inequality is strict in the support of f and g as we are assuming that r(x) > 0 for all x ∈ X . It

is clear that limλ→0 F (λ) = 1 +m/n > 1, while limλ→+∞ F (λ) = 0 < 1. Thus, by the intermediate value

theorem and the strict monotonicity of F we have established our first claim that λ0 exists and is unique.

It can now be seen that h satisfies the requirements of the result. Indeed, we have

1 =

∫
hdµ =

∫
nf +mg

n+ λ0mr
dµ =

1

n

∫
n

n+ λ0mr
(nf +mg)dµ
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=
1

n

∫ (
1− λ0mr

n+ λ0mr

)
(nf +mg)dµ =

1

n

(∫
(nf +mg)dµ−

∫
(λ0mr)

nf +mg

n+ λ0mr
dµ

)
=

1

n

(
n+m− λ0m

∫
rhdµ

)
= 1 +

m

n
− λ0

m

n

∫
rhdµ,

which implies that λ0 = (
∫
rhdµ)−1. This shows us that nh +m(

∫
rhdµ)−1rh = nh + λ0mrh = nf +mg,

so that h gives rise to null distributions for which the distribution of the combined sample matches that of

our data, concluding the existence part of the result.

As for its uniqueness, observe that any density h preserving the combined distribution under the null

hypothesis must be of the form h for some λ0 positive, since

nf +mg = nh+m
rh∫
rfdµ

=

{
n+mr

(∫
rhdµ

)−1
}
h = (n+ λ0mr)h.

But the λ0 such that h integrates to 1 is unique. This completes the proof.

Proof of Lemma 5. Suppose that the null hypothesis holds, so that g = rf/
∫
rfdµ. It follows from Lemma 4

and its proof that f = h and that λ0 = (
∫
rfdµ)−1. We therefore see that λ0rf − g = 0, so indeed

TF,r(f, g) = 0.

We now turn to the reverse implication. Assuming that f and g are such that TF,r(f, g) = 0, we will

show that H0 must be true. By assumption, H is dense in C0
b (X ) with respect to ∥ · ∥∞, so that for all

ϕ ∈ C0
b (X ) and all ϵ > 0 there exists φ ∈ H such that ∥φ− ϕ∥∞ ≤ ϵ. Thus∣∣∣∣ ∫ λ0rf − g

n/m+ λ0r
ϕ dµ

∣∣∣∣ ≤ ∣∣∣∣∫ λ0rf

n/m+ λ0r
(ϕ− φ)dµ

∣∣∣∣+ ∣∣∣∣∫ λ0rf − g

n/m+ λ0r
φdµ

∣∣∣∣+ ∣∣∣∣∫ g

n/m+ λ0r
(ϕ− φ)dµ

∣∣∣∣
≤
∫
f |ϕ− φ|dµ+ ∥φ∥H TF,r(f, g) +

m

n

∫
g|ϕ− φ|dµ

=

∫
f |ϕ− φ|dµ+

m

n

∫
g|ϕ− φ|dµ ≤ (1 +m/n)ϵ,

where in the only equality we used our assumption that TF,r(f, g) = 0. As ϵ > 0 was arbitrary, we now see

that
∫

λ0rf−g
n/m+λ0r

ϕdµ = 0 for all ϕ ∈ C0
b (X ), which further implies

mg

n+ λ0mr
=

λ0mrf

n+ λ0mr
a.s.

by Lemma 9.3.2 in Dudley (2002). Simplifying this inequality we see that g = λ0rf ∝ rf , as required.

Proof of Theorem 6. We assume throughout the proof that H0 does not hold and aim to show that

P{DRPT does not reject H0} −→ 0

as n → ∞. Since we assume that H > ⌈1/α − 1⌉ we have α(1 + H) − 1 > 0 and we can therefore apply
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Markov’s inequality to see that

P{DRPT does not reject H0} = P

{
1 +

H∑
h=1

1{T (Zσ(h)) ≥ T (Z)} > α(1 +H)

}

≤
E
[∑H

h=1 1{T (Zσ(h)) ≥ T (Z)}
]

α(1 +H)− 1
=

H

α(1 +H)− 1
P{T (Zσ(1)) ≥ T (Z)},

where the last step follows from exchangeability. Using the shorthand σ = σ(1) it now suffices to show that

there exists η > 0 such that T (Z)
P−→ η and T (Zσ)

P−→ 0.

We will first prove that E[|T (Zσ)|] = E[T (Zσ)] −→ 0. Write

Tσφ :=
1

n

 n∑
i=1

λ̂mr(Zσ(i))

n+ λ̂mr(Zσ(i))
φ(Zσ(i))−

n+m∑
j=n+1

n

n+ λ̂mr(Zσ(j))
φ(Zσ(j))

 ,

so that we have T (Zσ) = sup∥φ∥H≤1 |Tσφ |. Write N ≡ N(δ) ≡ N ({∥φ∥H ≤ 1}, δ, ∥ · ∥∞) for the covering

number of {∥φ∥H ≤ 1} with respect to ∥ · ∥∞ and let {ψ1, . . . , ψN} be an associated δ-cover. Now, for a

generic function φ0 ∈ H such that ∥φ0∥H ≤ 1 we have

E[T (Zσ)] = E

[
sup

∥φ∥H≤1

(|Tσφ | − |Tσφ0
|)

]
+ E[|Tσφ0

|]

≤ E

 sup
∥φ1∥H≤1
∥φ2∥H≤1

(|Tσφ1
| − |Tσφ2

|)

+ E[|Tσφ0
|] ≤ E

 sup
∥φ1∥H≤1
∥φ2∥H≤1

∣∣Tσφ1
− Tσφ2

∣∣
+ E[|Tσφ0

|]

≤ 2E

 sup
∥φ1∥H≤1
∥φ2∥H≤1

∥φ1−φ2∥∞≤δ

∣∣Tσφ1
− Tσφ2

∣∣
+ 2E

[
max
i∈[N ]

∣∣Tσψ1
− Tσψi

∣∣]+ E[|Tσφ0
|]

≤ 2E

[
sup

∥φ∥∞≤δ
|Tσφ |

]
+ (4N + 1) sup

∥φ∥H≤1

E[|Tσφ |], (20)

where the penultimate inequality follows from a one-step discretisation argument as in Equation 5.34 in

Wainwright (2019) and the final inequality follows on bounding the maximum by a sum, using the fact that

Tσφ1
− Tσφ2

= Tσφ1−φ2
for any φ1, φ2, and using the triangle inequality to say that maxi∈[N ] ∥ψ1 − ψi∥H ≤ 2.

We will now bound each term on the right-hand side of (20) separately. As for the first, observe that

|Tσφ | =
1

n

∣∣∣∣∣∣
n∑
i=1

λ̂mr(Zσ(i))

n+ λ̂mr(Zσ(i))
φ(Zσ(i))−

n+m∑
j=n+1

n

n+ λ̂mr(Zσ(j))
φ(Zσ(j))

∣∣∣∣∣∣
≤ 1

n


n∑
i=1

∣∣∣∣∣ λ̂mr(Zσ(i))

n+ λ̂mr(Zσ(i))
φ(Zσ(i))

∣∣∣∣∣+
n+m∑
j=n+1

∣∣∣∣∣ n

n+ λ̂mr(Zσ(j))
φ(Zσ(j))

∣∣∣∣∣
 ≤ n+m

n
∥φ∥∞
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for any φ ∈ H, which implies that

E

[
sup

∥φ∥∞≤δ
|Tσφ |

]
≤ n+m

n
δ.

We now turn to the second term in (20). With our assumption that ∥ · ∥∞ ≤ γ∥ · ∥H for a constant γ,

it follows from the Cauchy–Schwarz inequality, Equation (25) and Lemma 7 (i) that for any φ such that

∥φ∥H ≤ 1 we have

E[|Tσφ0
|] ≤

{
E
[
(Tσφ )

2
]}1/2 ≤ γ

√
(c+ C)

c

n+m

n2
.

Putting these bounds together, we see that for any δ > 0 we have

E[T (Zσ)] ≤ 2
n+m

n
δ + {4N(δ) + 1} γ

√
(c+ C)

c

n+m

n2
.

Since we assume that N ({∥φ∥H ≤ 1}, δ, ∥ · ∥∞) is finite for all δ > 0, there exists a sequence (δn)n∈N+ such

that δn ↘ 0 and N ({∥φ∥H ≤ 1}, δn, ∥ · ∥∞) ≤ n1/4, for all n ∈ N+. This implies that δn + n−1/2N(δn) → 0,

so that E[T (Zσ)] → 0, and we therefore have that T (Zσ)
P−→ 0.

It now remains to study the behaviour of the unpermuted statistic T (Z). Define the population quantity

TF,r = sup
∥φ∥H≤1

|Iφ|, where Iφ :=

∫
λ0rf − g

n/m+ λ0r
φ dµ

with λ0 such that
∫

nf+mg
n+λ0mr

dµ = 1. Furthermore, define its asymptotic counterpart to be

T∞
F,r = sup

∥φ∥H≤1

|I∞φ |, where I∞φ :=

∫
λ∞rf − g

τ + λ∞r
φ dµ

with λ∞ such that
∫

τf+g
τ+λ∞rdµ = 1. As we are working under the alternative hypothesis, we know by

Lemma 5 that T∞
F,r > 0. Writing id for the identity permutation, we have

|T (Z)− TF,r| =

∣∣∣∣∣ sup
∥φ∥H≤1

|T id
φ | − sup

∥φ∥H≤1

|Iφ|

∣∣∣∣∣ ≤
∣∣∣∣∣ sup
∥φ∥H≤1

(|T id
φ | − |Iφ|)

∣∣∣∣∣ ≤ sup
∥φ∥H≤1

∣∣T id
φ − Iφ

∣∣
= sup

∥φ∥H≤1

∣∣∣∣∣∣ 1n
n∑
i=1

λ̂mr(Xi)

n+ λ̂mr(Xi)
φ(Xi)−

1

n

m∑
j=1

n

n+ λ̂mr(Yj)
φ(Yj)−

∫
λ0rf − g

n/m+ λ0r
φdµ

∣∣∣∣∣∣
≤ sup

∥φ∥H≤1

∣∣∣∣∣ 1n
n∑
i=1

λ̂mr(Xi)

n+ λ̂mr(Xi)
φ(Xi)−

∫
λ0mrf

n+ λ0mr
φdµ

∣∣∣∣∣
+ sup

∥φ∥H≤1

∣∣∣∣∣∣ 1m
m∑
j=1

m

n+ λ̂mr(Yj)
φ(Yj)−

∫
mg

n+ λ0mr
φdµ

∣∣∣∣∣∣ .
These two terms can be bounded by almost identical arguments so we will restrict attention to the first. By
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the triangle inequality this is bounded by

sup
∥φ∥H≤1

∣∣∣∣∣ 1n
n∑
i=1

λ̂mr(Xi)

n+ λ̂mr(Xi)
φ(Xi)−

1

n

n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
φ(Xi)

∣∣∣∣∣
+ sup

∥φ∥H≤1

∣∣∣∣∣ 1n
n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
φ(Xi)−

∫
λ0mrf

n+ λ0mr
φdµ

∣∣∣∣∣
≤ |λ̂/λ0 − 1| sup

∥φ∥H≤1

{
1

n

n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)

n

n+ λ̂mr(Xi)
|φ(Xi)|

}

+ sup
∥φ∥H≤1

∣∣∣∣∣ 1n
n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
φ(Xi)− E

[
λ0mr(X1)

n+ λ0mr(X1)
φ(X1)

]∣∣∣∣∣
≤ γ |λ̂/λ0 − 1|+ sup

∥φ∥H≤1

∣∣∣∣∣ 1n
n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
φ(Xi)− E

[
λ0mr(X1)

n+ λ0mr(X1)
φ(X1)

]∣∣∣∣∣ ,
where in the last inequality we used our assumption that ∥ · ∥∞ ≤ γ∥ · ∥H. By Lemma 12 below and the

fact that C−1 ≤ λ0 ≤ c−1, we have E|λ̂/λ0 − 1| = O(n−1/2) as n → ∞. Turning to the second term, and

recalling that we write N ≡ N(δ) ≡ N ({∥φ∥H ≤ 1}, δ, ∥ · ∥∞) for the covering number of {∥φ∥H ≤ 1} with

respect to ∥ · ∥∞ and {ψ1, . . . , ψN} for an associated δ-cover, we have

E

[
sup

∥φ∥H≤1

∣∣∣∣∣ 1n
n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
φ(Xi)− E

{
λ0mr(X1)

n+ λ0mr(X1)
φ(X1)

}∣∣∣∣∣
]

≤ 2δ + E

[
max
j∈[N ]

∣∣∣∣∣ 1n
n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
ψj(Xi)− E

{
λ0mr(X1)

n+ λ0mr(X1)
ψj(X1)

}∣∣∣∣∣
]

≤ 2δ +N max
j∈[N ]

E

[∣∣∣∣∣ 1n
n∑
i=1

λ0mr(Xi)

n+ λ0mr(Xi)
ψj(Xi)− E

{
λ0mr(X1)

n+ λ0mr(X1)
ψj(X1)

}∣∣∣∣∣
]
≤ 2δ +

γN(δ)

n1/2

for any δ > 0. As earlier in the proof, we can choose an appropriate sequence (δn) such that this right-hand

side converges to zero as n→ ∞. Combining our previous bounds, we see that

E |T (Z)− TF,r| → 0. (21)

Furthermore, we have that

|TF,r − T∞
F,r| =

∣∣∣∣∣ sup
∥φ∥H≤1

|Iφ| − sup
∥φ∥H≤1

∣∣I∞φ ∣∣
∣∣∣∣∣ ≤ sup

∥φ∥H≤1

∣∣Iφ − I∞φ
∣∣

= sup
∥φ∥H≤1

∣∣∣∣∫ ( λ0rf − g

n/m+ λ0r
− λ∞rf − g

τ + λ∞r

)
φdµ

∣∣∣∣
≤

(
sup

∥φ∥H≤1

∥φ∥∞

)∫ ∣∣∣∣ λ0rf − g

n/m+ λ0r
− λ∞rf − g

τ + λ∞r

∣∣∣∣ dµ ≤ γ

∫ ∣∣∣∣ λ0rf − g

n/m+ λ0r
− λ∞rf − g

τ + λ∞r

∣∣∣∣ dµ
≤ γ

∫
|τ − n/m|+ |λ∞ − λ0|r
(n/m+ λ0r)(τ + λ∞r)

(λ∞rf + g)dµ+ γ

∫
|λ∞ − λ0|
n/m+ λ0r

rfdµ

≤ γ {1 +m/n}{|τm/n− 1|+ |λ∞/λ0 − 1|}+ γ|λ∞/λ0 − 1|. (22)

36



Since λ0, λ∞ ∈ [C−1, c−1] under 0 < c ≤ r(·) ≤ C, we can show that the above expression converges to zero

provided that n/m→ τ and λ0 → λ∞. To justify the latter claim, it suffices to observe that (19) converges

uniformly over [C−1, c−1] to

F∞ :

R+ → R+

λ 7→
∫ τf + g

τ + λr
dµ

as n,m → ∞ by the dominated convergence theorem. This, together with the continuity and the strict

monotonicity of F∞ and the functions in (19), implies the pointwise convergence of the inverse functions,

thus showing λ0 → λ∞. Combining (21) and (22), we obtain

E
∣∣T (Z)− T∞

F,r
∣∣ ≤ E |T (Z)− TF,r|+

∣∣TF,r − T∞
F,r
∣∣→ 0,

which yields T (Z)
P−→ T∞

F,r > 0, thereby completing the proof.

Lemma 12. Assume m ≤ n ≤ τ m for τ ≥ 1, and 0 < c ≤ r(x) ≤ C for all x ∈ X . Let λ̂ be such that

n∑
i=1

λ̂mr(Xi)

n+ λ̂mr(Xi)
=

n+m∑
j=n+1

n

n+ λ̂mr(Yj)

and λ0 such that ∫
nf +mg

n+ λ0mr
dµ = 1.

There exists a constant Q0 ≡ Q0(p, c, C, τ) > 0 such that

E[|λ̂− λ0|p] ≤ Q0 n
−p/2 for all p ∈ N.

Proof. We know that λ̂ is a Z-estimator, being the solution with respect to λ of

Ψn,m(λ) :=
1

n+m

n+m∑
k=1

ψλ(Zk) = 0, with ψλ(x) :=
n+m

n+ λmr(x)
− 1,

whereas λ0 is a population quantity and satisfies∫
nf

n+ λ0mr
dµ+

∫
mg

n+ λ0mr
dµ = 1. (23)

We can use the assumptions m ≤ n ≤ τm and 0 < c ≤ r(·) ≤ C to show that

∂ψλ(x)

∂λ
= − (n+m)mr(x)

{n+ λmr(x)}2
≤ −cτ

−1(1 + τ−1)n2

(1 + C/c)2n2
= − c3(1 + τ)

τ2(c+ C)2
=: −a(c, C, τ) ≡ −a < 0,

which implies that for all ϵ > 0 we have {|λ̂−λ0| < ϵ} ⊇ {|Ψn,m(λ̂)−Ψn,m(λ0)| < aϵ} = {|Ψn,m(λ0)| < aϵ},
using the fact that Ψn,m(λ̂) = 0 by definition of λ̂. As a result, the previous inclusion shows that the

boundedness assumption on r(·) allows to relate how close λ̂ is to λ0 with |Ψn,m(λ0)|, which is easier to
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analyse since it is the sum of zero mean, bounded i.i.d. random variables. In this regard, we have

P{|λ̂− λ0| ≥ ϵ} ≤ P{|Ψn,m(λ0)| ≥ aϵ} = P

{∣∣∣∣∣ 1

n+m

n+m∑
k=1

(
n+m

n+ λ0mr(Zk)
− 1

)∣∣∣∣∣ ≥ aϵ

}

= P


∣∣∣∣∣∣ 1n

n∑
i=1

n

n+ λ0mr(Xi)
+

1

m

m∑
j=1

m

n+ λ0mr(Yj)
− 1

∣∣∣∣∣∣ ≥ aϵ


(23)
= P


∣∣∣∣∣∣ 1n

n∑
i=1

n

n+ λ0mr(Xi)
+

1

m

m∑
j=1

m

n+ λ0mr(Yj)
−
∫

nf

n+ λ0mr
dµ−

∫
mg

n+ λ0mr
dµ

∣∣∣∣∣∣ ≥ aϵ


≤ P

{∣∣∣∣∣ 1n
n∑
i=1

n

n+ λ0mr(Xi)
−
∫

nf

n+ λ0mr
dµ

∣∣∣∣∣ ≥ aϵ

2

}

+ P


∣∣∣∣∣∣ 1m

m∑
j=1

m

n+ λ0mr(Yj)
−
∫

mg

n+ λ0mr
dµ

∣∣∣∣∣∣ ≥ aϵ

2


≤ 2 exp

{
−na

2ϵ2

2

}
+ 2 exp

{
−ma

2ϵ2

2

}
≤ 2 exp

{
−na

2ϵ2

2

}
+ 2 exp

{
−na

2ϵ2

2τ

}
≤ 4 exp

{
−na

2ϵ2

2τ

}
,

(24)

where in the last line we applied Hoeffding’s inequality for bounded random variables (see Wainwright, 2019,

Equation 2.11) to 0 ≤ m
n+λ0mr(·) ≤ n

n+λ0mr(·) ≤ 1, and the assumption that m ≤ n ≤ τm. We can thus

bound the moment of order p of |λ̂− λ0| as

E[|λ̂− λ0|p] =
∫ ∞

0

P{|λ̂− λ0|p ≥ ϵ}dϵ =
∫ ∞

0

P{|λ̂− λ0| ≥ ϵ
1
p }dϵ

=

∫ ∞

0

P{|λ̂− λ0| ≥ ϵ} p ϵp−1dϵ =

(
2τ

na2

) p
2
∫ ∞

0

P

{
|λ̂− λ0| ≥

√
2τ

na2
t

}
p tp−1dt

≤ 2p

(
2τ

na2

) p
2
∫ ∞

0

2tp−1e−t
2

dt = 2p

(
2τ

na2

) p
2
∫ ∞

0

t
p
2−1e−tdt = 2p

(
2τ

na2

) p
2

Γ
(p
2

)
,

where in the last equality we used the definition of the Gamma function. This completes the proof.

Proof of Lemma 7. We will start by proving (i). The strategy is to relate the distribution of

Sn
n

:=
1

n

n∑
i=1

φ(Zσ(i))−
∫
φdĤn,m,

where σ is sampled from (3), to that of an analogous version that evolves over time according to an equivalent

version of Algorithm 1. More precisely, writing σt for the permutation at time t ∈ N of this new algorithm,

we consider a procedure that at each time step t samples i ∈ [n] and j ∈ {n + 1, . . . , n +m} uniformly at

random, and switches Zσt(i) with Zσt(j) with probability

p̃ti,j := P{switch i and j at time t | i, j are selected} =
λ̂nmrti

(n+ λ̂mrti)(n+ λ̂mrtj)
,
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where rti := r(Zσt(i)) for all i ∈ [n +m]. As already outlined in Remark 1, this algorithm still targets the

distribution (3) since p̃ti,j/p̃
t
j,i = rti/r

t
j . Consider

Stn
n

:=
1

n

n∑
i=1

φ(Zσt(i))−
∫
φdĤn,m =

1

n

n∑
i=1

φ(Zσt(i))−
n+m∑
i=1

φ(Zi)

n+ λ̂mr(Zi)

=
1

n

n∑
i=1

φ(Zσt(i))−
n+m∑
i=1

φ(Zσt(i))

n+ λ̂mr(Zσt(i))

=
1

n

n∑
i=1

φ(Zσt(i))−
n∑
i=1

φ(Zσt(i))

n+ λ̂mr(Zσt(i))
−

n+m∑
j=n+1

φ(Zσt(j))

n+ λ̂mr(Zσt(j))

=
1

n

 n∑
i=1

λ̂mr(Zσt(i))

n+ λ̂mr(Zσt(i))
φ(Zσt(i))−

n+m∑
j=n+1

n

n+ λ̂mr(Zσt(j))
φ(Zσt(j))


=

1

n

 n∑
i=1

λ̂mrti

n+ λ̂mrti
φti −

n+m∑
j=n+1

n

n+ λ̂mrtj
φtj

 , (25)

where we further defined φti = φ(Zσt(i)) for all i ∈ [n +m]. Supposing that the algorithm is initialised at

the stationary distribution (3), we have E[(n−1Sn)
2] = E[(n−1Stn)

2] for all t ∈ N, therefore it is equivalent

to prove the claim (i) for Stn/n. This approach offers the significant advantage of allowing us to leverage

the Markov chain’s dynamics to construct zero-mean random variables that can be linked to Stn using the

definition of p̃ti,j . In this regard, since switching the indices i and j at time t gives St+1
n − Stn = φtj − φti, we

have

E

[(
St+1
n

n

)2

| σt, Z

]
=

1− 1

nm

n∑
i=1

n+m∑
j=n+1

p̃ti,j


(
Stn
n

)2

+
1

nm

n∑
i=1

n+m∑
j=n+1

{
Stn + φtj − φti

n

}2

p̃ti,j

=

(
Stn
n

)2

+
1

n3m

n∑
i=1

n+m∑
j=n+1

(φti − φtj)
2p̃ti,j −

2

n2m

Stn
n

n∑
i=1

n+m∑
j=n+1

(φti − φtj)p̃
t
i,j .

As a result, the law of total expectation and the fact that the procedure is initialised at stationarity imply

that

0 = E

[(
St+1
n

n

)2
]
− E

[(
Stn
n

)2
]

=
1

n2
E

 1

nm

n∑
i=1

n+m∑
j=n+1

(φti − φtj)
2p̃ti,j

− 2

n
E

Stn
n

 1

nm

n∑
i=1

n+m∑
j=n+1

(φti − φtj)p̃
t
i,j


 .

Introduce the notation qti := λ̂mrti/(n+ λ̂mrti) so that we may write p̃ti,j = qti(1− qtj). With this definition

it follows from (10) that we have
∑n
i=1 q

t
i =

∑n+m
j=n+1(1− qtj). We therefore have

n∑
i=1

n+m∑
j=n+1

(φti − φtj)p̃
t
i,j =

n∑
i=1

n+m∑
j=n+1

(φti − φtj)q
t
i(1− qtj)
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=

 n+m∑
j=n+1

(1− qtj)

( n∑
i=1

φtiq
t
i

)
−

(
n∑
i=1

qti

) n+m∑
j=n+1

φtj(1− qtj)


=

(
n∑
i=1

qti

) n∑
i=1

φtiq
t
i −

n+m∑
j=n+1

φtj(1− qtj)

 =

(
n∑
i=1

qti

)
Stn.

Then, for ∥φ∥∞ ≤ B <∞, it follows that

0 =
1

n2
E

 1

nm

n∑
i=1

n+m∑
j=n+1

(φti − φtj)
2p̃ti,j

− 2

m
E

[(
1

n

n∑
i=1

qti

)(
Stn
n

)2
]

≤ 4B2

n2
− 2

m
E

[(
1

n

n∑
i=1

qti

)(
Stn
n

)2
]
.

Now observe that under the assumption that 0 < c ≤ r(x) ≤ C for all x ∈ X , we have that C−1 ≤ λ̂ ≤ c−1,

which implies

mc

mc+ nC
≤ qi ≤

mC

mC + nc
for all i ∈ [n+m]. (26)

It follows that
mc

mc+ nC
E

[(
Stn
n

)2
]
≤ E

[(
1

n

n∑
i=1

qti

)(
Stn
n

)2
]
≤ 2mB2

n2
,

which gives E
[(
n−1Stn

)2] ≤ 2B2(mc+nC)/cn2. Similar calculations show that we also have E
[(
n−1Stn

)2] ≤
2B2(nc+mC)/cn2, and summing the two gives

E

[(
Stn
n

)2
]
≤ B2(c+ C)

c

n+m

n2
.

This concludes the proof for part (i), and further shows that n−1Stn
P→ 0 since n/m→ τ ∈ R+.

We now move on to proving (ii). Let h be the density of the form h = nf+mg
n+λ0mr

for a suitable constant

λ0 > 0 such that
∫
hdµ = 1. By the triangle inequality we have∣∣∣∣∣ 1n

n∑
i=1

φ(Zσ(i))−
∫
φh∞dµ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

φ(Zσ(i))−
∫
φdĤn,m

∣∣∣∣∣+
∣∣∣∣∫ φdĤn,m −

∫
φhdµ

∣∣∣∣+ ∣∣∣∣∫ φ(h− h∞)dµ

∣∣∣∣
=: (I) + (II) + (III),

and since (I)
P→ 0 by part (i), it remains to show that (II) and (III) likewise converge to zero in probability.

We proceed by analysing each term individually. As for (II), observe that

(II) =

∣∣∣∣∫ φdĤn,m −
∫
φhdµ

∣∣∣∣ =
∣∣∣∣∣
n+m∑
i=1

φ(Zi)

n+ λ̂mr(Zi)
−
∫
φ
nf +mg

n+ λ0mr
dµ

∣∣∣∣∣
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=

∣∣∣∣∣∣
n∑
i=1

φ(Xi)

n+ λ̂mr(Xi)
+

n+m∑
j=n+1

φ(Yj)

n+ λ̂mr(Yj)
−
∫

nφ

n+ λ0mr
fdµ−

∫
mφ

n+ λ0mr
gdµ

∣∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

φ(Xi)

n+ λ̂mr(Xi)
−
∫

nφ

n+ λ0mr
fdµ

∣∣∣∣∣+
∣∣∣∣∣∣
n+m∑
j=n+1

φ(Yj)

n+ λ̂mr(Yj)
−
∫

mφ

n+ λ0mr
gdµ

∣∣∣∣∣∣ =: (a) + (b).

Each of these terms is bounded using very similar arguments, so we restrict attention to (b) here. We have

(b) =

∣∣∣∣∣∣ 1m
n+m∑
j=n+1

mφ(Yj)

n+ λ̂mr(Yj)
−
∫

mφ

n+ λ0mr
gdµ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1m
n+m∑
j=n+1

mφ(Yj)

n+ λ̂mr(Yj)
− 1

m

n+m∑
j=n+1

mφ(Yj)

n+ λ0mr(Yj)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1m

n+m∑
j=n+1

mφ(Yj)

n+ λ0mr(Yj)
−
∫

mφ

n+ λ0mr
gdµ

∣∣∣∣∣∣ ,
where the second term converges to zero in probability via Hoeffding’s inequality, by combining a similar

argument to that in (24) with the bound ∥φ∥∞ ≤ B. As for the first term, we have∣∣∣∣∣∣ 1m
n+m∑
j=n+1

mφ(Yj)

n+ λ̂mr(Yj)
− 1

m

n+m∑
j=n+1

mφ(Yj)

n+ λ0mr(Yj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1− λ̂/λ0)
1

m

n+m∑
j=n+1

λ0m
2r(Yj)φ(Yj)

{n+ λ̂mr(Yj)}{n+ λ0mr(Yj)}

∣∣∣∣∣∣
≤ |λ̂/λ0 − 1| 1

n

n+m∑
j=n+1

|φ(Yj)|
(

λ0mr(Yj)

n+ λ0mr(Yj)

)(
n

n+ λ̂mr(Yj)

)
≤ Bm

n
|λ̂/λ0 − 1| P−→ 0,

using Lemma 12, the fact that C−1 ≤ λ0 ≤ c−1 and n/m → τ ∈ R+. An almost identical argument applies

also to (a), which implies that (II)
P→ 0. As for (III), we can use again the fact that ∥φ∥∞ ≤ B to show

that

(III) =

∣∣∣∣∫ (h− h∞)φdµ

∣∣∣∣ = ∣∣∣∣∫ ( n
mf + g
n
m + λ0r

− τf + g

τ + λ∞r

)
φdµ

∣∣∣∣ ≤ ∥φ∥∞
∫ ∣∣∣∣ n

mf + g
n
m + λ0r

− τf + g

τ + λ∞r

∣∣∣∣ dµ
≤ B

∫ |τ − n
m |

n
m + λ0r

fdµ+B

∫ |τ − n
m |+ |λ∞ − λ0|r

(τ + λ∞r)(
n
m + λ0r)

(τf + g)dµ→ 0,

arguing as we did for (22). This concludes the proof.

Proof of Proposition 8. This proof borrows ideas from the proof of Lemma 4 in Gretton et al. (2012). Define

the linear operator

Trf :

H → R

φ 7→
∫

λ0rf
n/m+λ0r

φdµ.

Using the reproducing property of the RKHS, i.e. φ(x) = ⟨φ, k(·, x)⟩H, we can show that this operator is
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bounded, since for all φ ∈ H we have

|Trfφ| ≤
∫
X

λ0r(x)f(x)

n/m+ λ0r(x)
|φ(x)|dµ(x) =

∫
X

λ0r(x)f(x)

n/m+ λ0r(x)
|⟨φ, k(·, x)⟩H| dµ(x)

≤ ∥φ∥H
∫
X

√
k(x, x)

λ0r(x)f(x)

n/m+ λ0r(x)
dµ(x),

which shows that |Trfφ|/∥φ∥H is bounded uniformly in φ. The same is true for the linear operator

Tg :

H → R

φ 7→
∫

g
n/m+λ0r

φdµ,

hence the Riesz representation theorem implies that there exist mrf ,mg ∈ H such that Trfφ = ⟨mrf , φ⟩H
and Tgφ = ⟨mg, φ⟩H. Furthermore, using again the reproducing property of H, we have that

mrf (t) = ⟨mrf , k(t, ·)⟩H = Trfk(t, ·) =
∫
X

λ0r(x)f(x)

n/m+ λ0r(x)
k(x, t)dµ(x)

and, similarly,

mg(t) =

∫
X

g(x)

n/m+ λ0r(x)
k(x, t)dµ(x).

This implies that

T 2
F,r(f, g) =

(
sup

∥φ∥H≤1

∣∣∣∣∫ λ0rf − g

n/m+ λ0r
φdµ

∣∣∣∣
)2

=

(
sup

∥φ∥H≤1

|Trfφ− Tgφ|

)2

=

(
sup

∥φ∥H≤1

|⟨mrf −mg, φ⟩H|

)2

= ∥mrf −mg∥2H = ⟨mrf ,mrf ⟩H + ⟨mg,mg⟩H − 2⟨mrf ,mg⟩H

=

∫
X

λ0r(t)f(t)

n/m+ λ0r(t)

(∫
X

λ0r(x)f(x)

n/m+ λ0r(x)
k(x, t)dµ(x)

)
dµ(t)

+

∫
X

g(t)

n/m+ λ0r(t)

(∫
X

g(x)

n/m+ λ0r(x)
k(x, t)dµ(x)

)
dµ(t)

− 2

∫
X

λ0r(t)f(t)

n/m+ λ0r(t)

(∫
X

g(x)

n/m+ λ0r(x)
k(x, t)dµ(x)

)
dµ(t)

= EX,X′

[
λ20r(X)r(X ′)

{n/m+ λ0r(X)}{n/m+ λ0r(X ′)}
k(X,X ′)

]
+ EY,Y ′

[
1

{n/m+ λ0r(Y )}{n/m+ λ0r(Y ′)}
k(Y, Y ′)

]
− 2EX,Y

[
λ0r(X)

{n/m+ λ0r(X)}{n/m+ λ0r(Y )}
k(X,Y )

]
,

where X,X ′ i.i.d∼ f independently of Y, Y ′ i.i.d∼ g, and concludes the proof.

Proof of Theorem 9. We consider a kernel function K : R → R that satisfies the assumptions in Section 3,
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namely K ∈ L1(R) ∩ L2(R) ∩ L4(R) and K(0) = 1. Based on this, we define the constants

κj(d) :=

(∫
R
|K(u)|j du

)d
<∞ for j ∈ {1, 2, 4},

which are finite by assumption. Since the kernel is fixed in advance, we omit its dependence from the

notation. We frequently use the analytical properties of the product kernel kζ with bandwidth ζ ≥ 1, which

satisfies∫
Rd

|kζ(x, y)|j dy = ζ(j−1)d

(∫
R
|K(u)|j du

)d
= κj(d) ζ

(j−1)d for all x ∈ Rd and j ∈ {1, 2, 4}.

As a result, using the fact that max{∥f∥∞, ∥g∥∞} ≤M , it follows that for any x ∈ Rd we have

E[|kζ(x,X)|j ] =
∫
Rd

|kζ(x, y)|j f(y)dy ≤M

∫
Rd

|kζ(x, y)|j dy =Mκj(d)ζ
(j−1)d for j ∈ {1, 2, 4},

and similarly for the expectation of |kζ(x, Y )|j . Furthermore, these bounds imply the same bounds on the

quantities E[|kζ(X1, X2)|j ], E[|kζ(Y1, Y2)|j ] and E[|kζ(X,Y )|j ] for all j ∈ {1, 2, 4}. Now, we already know

that the DRPT controls the Type-I error at a nominal level α, so we can bound the minimax separation ρ∗r

by controlling its Type-II error. In order to do this, fix β ∈ (0, 1− α), choose H ≥ 2⌈ 1
αβ − 1⌉, and suppose

(f, g) ∈ Srθ (ρ) satisfies

MMD2
r,kζ

(f, g) ≥ max

{
2|E[Uid − Uσ]−MMD2

r,kζ
(f, g)|,

(
8

αβ
Var[Uσ − Uid]

)1/2
}
, (27)

where Uσ = U(Zσ) and Uid = U(Z), with U defined in (12) and σ sampled from (3). Then, a double

application of Markov’s inequality shows that

P {p > α} = P

(
1 +

H∑
h=1

1 {Uσ(h) ≥ Uid} > (1 +H)α

)
≤ 1 +H P {Uσ ≥ Uid}

(1 +H)α

≤ 1

(1 +H)α

(
1 +

H Var[Uσ − Uid]

{E[Uσ − Uid]}2

)
≤ 1

(1 +H)α

(
1 +

Hαβ

2

)
≤ β.

Bounding the terms on the right-hand side of (27) is therefore sufficient to establish an upper bound on

the minimax separation with respect to the squared shifted-MMD metric. However, since our goal is to

characterise the separation in terms of the L2 distance defined in (13), we must also relate MMD2
r,kζ

to

this L2 norm. The proof proceeds in two main steps: first, we analyse the expectation and variance terms

appearing on the right-hand side of (27) and derive appropriate upper bounds. In the second step, we

express the squared shifted-MMD as the sum of the square of the separation metric in (13) and the bias

term ∥ψr−φζ ∗ψr∥22, which can be controlled using the smoothness assumptions associated with the Sobolev

class. Combining these two steps yields an upper bound on ρ∗r . Throughout the following we set ζ = n
2

4s+d

so that in particular n−2ζd = n−
8s

4s+d ≤ 1. Also, for parameters a1, . . . , ak, we denote by Q(a1, . . . , ak) a

constant that depends only on these parameters. Its value may change from line to line, but it may only
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depend on on a1, . . . , ak.

• Mean and variance of Uσ

We begin by analysing the second moment of the permuted U-statistic. Through the following, sums over i’s

are to be intended for i varying in [n], sums over j’s are to be intended for j varying in {n+ 1, . . . , n+m},
and sums over k’s are to be intended for k varying in [n+m]. As in the proof of Lemma 7, we introduce a

stationary Markov chain whose stationary distribution coincides with the distribution of our permuted data.

We do this by considering the equivalent version of Algorithm 1 which at each time step t ∈ N samples i and

j uniformly at random, and switches Zσt(i) with Zσt(j) with probability

p̃ti,j := P(switch i and j at time t | i, j are selected) =
λ̂nmrti

(n+ λ̂mrti)(n+ λ̂mrtj)
,

with λ̂ as in the statement of Lemma 7 and rtk = r(Zσt(k)) for all k ∈ [n+m]. Write

Kt
ij := kζ(Zσt(i), Zσt(j)) and K

t
i := kζ(Zσt(i), ·),

qti :=
λ̂mrti

n+ λ̂mrti
and Stn :=

∑
i

qti =
∑
j

(1− qtj),

where the last equality holds by (10). In particular we have p̃ti,j = qti(1− qtj). We define the V-statistic

Vt =
1

n2

∥∥∥∥∥∥
∑
i

qtiK
t
i −

∑
j

(1− qtj)K
t
j

∥∥∥∥∥∥
2

H

=: ∥Gt∥2H = ⟨Gt, Gt⟩H,

which coincides with (11) evaluated on our data at time t with kernel kζ and will be convenient for our

analysis. We further define the U-statistic

Ut = Vt −
ζd

n2

∑
i

(qti)
2 − ζd

n2

∑
j

(1− qtj)
2 = Vt −

ζd

n2

∑
i

(qti)
2 − ζd

n2

∑
j

{1 + (qtj)
2 − 2qtj}

= Vt −
ζd

n2

∑
k

(qtk)
2 +

mζd

n2
− 2ζd

n2

∑
j

(1− qtj) = Vt −
2ζd

n2
Stn−

ζd

n2

∑
k

(qtk)
2 +

mζd

n2︸ ︷︷ ︸
permutation independent

,

which has the same distribution as Uσ for each t ∈ N. If we swap i and j at time t, then the difference

Ut+1 − Ut is equal to

∥Gt + n−1(Kt
j −Kt

i )∥2H − ∥Gt∥2H − 2ζd

n2
(qtj − qti) =

2

n
⟨Gt,Kt

j −Kt
i ⟩+

1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti).

By stationarity, we therefore have

0 = nmE[U2
t+1 − U2

t ]
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=
∑
i,j

E

[
qti(1− qtj)

({
Ut +

2

n
⟨Gt,Kt

j −Kt
i ⟩+

1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti)

}2

− U2
t

)]

=
∑
i,j

E
[
qti(1− qtj) · 2Ut

{
2

n
⟨Gt,Kt

j −Kt
i ⟩+

1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti)

}]

+
∑
i,j

E

[
qti(1− qtj)

{
2

n
⟨Gt,Kt

j −Kt
i ⟩+

1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti)

}2
]
, (28)

which is the sum of a linear and a quadratic term. In order to simplify this right-hand side we now provide

some useful identities. We notice that

∑
i,j

qti(1− qtj)(K
t
j −Kt

i ) = Stn

∑
j

(1− qtj)K
t
j −

∑
i

qtiK
t
i

 = −nStnGt,

1

n2

∑
i,j

qti(1− qtj)∥Kt
j −Kt

i∥2H =
1

n2

∑
i,j

qti(1− qtj)(2ζ
d − 2Kt

ij) =
2ζd

n2
(Stn)

2 − 2

n2

∑
i,j

qti(1− qtj)K
t
ij ,

and

2ζd

n2

∑
i,j

qti(1− qtj)(q
t
j − qti) =

2ζd

n2
Stn

∑
j

qtj(1− qtj)−
∑
i

(qti)
2

 =
2ζd

n2
Stn

{
m− Stn −

∑
k

(qtk)
2

}
.

Using these identities, the linear term in (28) gives

∑
i,j

E
[
qti(1− qtj) · 2Ut

{
2

n
⟨Gt,Kt

j −Kt
i ⟩+

1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti)

}]

= E

2Ut
 2

n
⟨Gt,

∑
i,j

(Kt
j −Kt

i )q
t
i(1− qtj)⟩+

1

n2

∑
i,j

∥Kt
j −Kt

i∥2H qti(1− qtj)−
2ζd

n2

∑
i,j

(qtj − qti)q
t
i(1− qtj)




= E

[
2Ut

{
−2Stn

(
Ut +

2ζd

n2
Stn +

ζd

n2

∑
k

(qtk)
2 − mζd

n2

)

+
2ζd

n2
(Stn)

2 − 2

n2

∑
i,j

qti(1− qtj)K
t
ij −

2ζd

n2
Stn

(
m− Stn −

∑
k

(qtk)
2

)


= −4E
[
StnU

2
t

]
− 4E

Ut 1
n2

∑
i,j

qti(1− qtj)K
t
ij

 . (29)

As for the quadratic term, it is useful to define G
−(i,j)
t := Gt − n−1{qtiKt

i − (1− qtj)K
t
j} and write

2

n
⟨Gt,Kt

j −Kt
i ⟩+

1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti)

=
2

n
⟨Gt −

1

n
{qtiKt

i − (1− qtj)K
t
j},Kt

j −Kt
i ⟩+

2

n2
⟨qtiKt

i − (1− qtj)K
t
j ,K

t
j −Kt

i ⟩
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+
1

n2
∥Kt

j −Kt
i∥2H − 2ζd

n2
(qtj − qti)

=
2

n
⟨G−(i,j)

t ,Kt
j −Kt

i ⟩+
2

n2
⟨qtiKt

i − (1− qtj)K
t
j ,K

t
j −Kt

i ⟩+
2

n2
(ζd −Kt

ij)−
2ζd

n2
(qtj − qti)

=
2

n
⟨G−(i,j)

t ,Kt
j −Kt

i ⟩+
2

n2
(qtiK

t
ij − ζdqti − ζd(1− qtj) + (1− qtj)K

t
ij) +

2

n2
(ζd −Kt

ij)−
2ζd

n2
(qtj − qti)

=
2

n
⟨G−(i,j)

t ,Kt
j −Kt

i ⟩+
2

n2
(qti − qtj)K

t
ij . (30)

Combining (28), (29), (30) gives

4E
[
StnU

2
t

]
= −4E

Ut 1
n2

∑
i,j

qti(1− qtj)K
t
ij

+
∑
i,j

E

[
qti(1− qtj)

{
2

n
⟨G−(i,j)

t ,Kt
j −Kt

i ⟩+
2

n2
(qti − qtj)K

t
ij

}2
]

≤ 4E

|Ut| 1
n2

∑
i,j

qti(1− qtj)|Kt
ij |

+
∑
i,j

E

[
qti(1− qtj)

{
2

n
⟨G−(i,j)

t ,Kt
j −Kt

i ⟩+
2

n2
(qti − qtj)K

t
ij

}2
]

≤ 4

√√√√√E[U2
t ]E

n−4
{∑

i,j

qti(1− qtj)|Kt
ij |
}2

+
8

n2

∑
i,j

E
[
qti(1− qtj)⟨G

−(i,j)
t ,Kt

j −Kt
i ⟩2
]

+
8

n4

∑
i,j

E
[
qti(1− qtj)(q

t
i − qtj)

2(Kt
ij)

2
]

≤ 4

√
E[U2

t ]E[n−2
∑
i,j

{qti(1− qtj)K
t
ij}2] +

8

n2

∑
i,j

E
[
qti(1− qtj)⟨G

−(i,j)
t ,Kt

j −Kt
i ⟩2
]

+
8

n4

∑
i,j

E
[
qti(1− qtj)(q

t
i − qtj)

2(Kt
ij)

2
]

≤ 12max


√
E[U2

t ]E[n−2
∑
i,j

{qti(1− qtj)K
t
ij}2] ,

2

n2

∑
i,j

E
[
qti(1− qtj)⟨G

−(i,j)
t ,Kt

j −Kt
i ⟩2
]
,

2

n4

∑
i,j

E
[
qti(1− qtj)(q

t
i − qtj)

2(Kt
ij)

2
] .

(31)

We will now bound each of the three quantities inside the maximum separately. If the first quantity reaches

the maximum, we can use m ≤ n ≤ τm, qtk ∈ [0, 1] and Stn ≥ nmc
nC+mc (see (26) in the proof of Lemma 7) to

show that

nmc

nC +mc
E
[
U2
t

]
≤ E

[
StnU

2
t

]
≤ 3

√
E[U2

t ]E[n−2
∑
i,j

{qti(1− qtj)K
t
ij}2]

≤ 3

√
E[U2

t ]E[n−2
∑
i,j

(Kt
ij)

2] ≤ 3

√
E[U2

t ]E[n−2
∑
k1 ̸=k2

(Kt
k1,k2

)2]
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= 3

√√√√√E[U2
t ]E

n−2

∑
i1 ̸=i2

k2ζ(Xi1 , Xi2) +
∑
j1 ̸=j2

k2ζ(Yj1 , Yj2) + 2
∑
i,j

k2ζ(Xi, Yj)




= 3

√
E[U2

t ]E
[
n−2

{
n(n− 1)k2ζ(X1, X2) +m(m− 1)k2ζ(Y1, Y2) + 2nmk2ζ(X1, Y1)

}]
≤ 3
√
E[U2

t ] {E[k2ζ(X1, X2)] + E[k2ζ(Y1, Y2)] + 2E[k2ζ(X1, Y1)]} ≤ 6
√

E[U2
t ]Mκ2(d)ζd. (32)

Note that in the fourth inequality we bound
∑
i,j(K

t
i,j)

2 by
∑
k1 ̸=k2(K

t
k1,k2

)2, the latter being more advan-

tageous to analyse due to its permutation invariance. Making (32) explicit for the expectation of U2
t shows

that there exists a constant Q0 ≡ Q0(c, C, d, τ,M) such that E[U2
t ] ≤ Q0

ζd

n2 , in the case where the first

quantity in the maximum in (31) dominates. As for the case when the third quantity dominates, we can

argue exactly as in (32) to show that

n−4
∑
i,j

E
[
qti(1− qtj)(q

t
i − qtj)

2(Kt
ij)

2
]
≤ 4Mκ2(d)ζ

d

n2
, (33)

which implies that E[U2
t ] ≤ Q0

ζd

n3 . Finally, as for the term involving G
−(i,j)
t , we have

n−2
∑
i,j

E
[
qti(1− qtj)⟨G

−(i,j)
t ,Kt

j −Kt
i ⟩2
]
≤ 2n−2

∑
i,j

E
[
⟨G−(i,j)

t ,Kt
i ⟩2
]
+ 2n−2

∑
i,j

E
[
⟨G−(i,j)

t ,Kt
j⟩2
]
,

and we can analyse the evolution of the right hand side through a version of Algorithm 1 where indices i

and j remain fixed. In other words, the Algorithm works the same, but we are just allowed to swap indices

ĩ ̸= i with j̃ ̸= j with probability qt
ĩ
(1 − qt

j̃
). We show in Lemma 13 that this procedure still preserves

the stationary distribution. The two terms above can be bounded by almost identical arguments so we will

restrict attention to the first. In analysing the evolution of ⟨G−(i,j)
t ,Kt

i ⟩2, it is useful to write

∑
ĩ ̸=i

∑
j̃ ̸=j

qt
ĩ
(1− qt

j̃
)(Kt

j̃
−Kt

ĩ
) =

∑
ĩ ̸=i

qt
ĩ

∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃

−

∑
j̃ ̸=j

(1− qt
j̃
)

∑
ĩ ̸=i

qt
ĩ
Kt
ĩ


= −nStnG

−(i,j)
t + (1− qtj)

∑
ĩ̸=i

qt
ĩ
Kt
ĩ
− qti

∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃
.

Under stationarity, we thus have

0 = nmE[⟨G−(i,j)
t+1 ,Kt

i ⟩2 − ⟨G−(i,j)
t ,Kt

i ⟩2]

=
∑
ĩ ̸=i

∑
j̃ ̸=j

E
[
qt
ĩ
(1− qt

j̃
)
{
⟨G−(i,j)

t + n−1(Kt
j̃
−Kt

ĩ
),Kt

i ⟩2 − ⟨G−(i,j)
t ,Kt

i ⟩2
}]

=
∑
ĩ ̸=i

∑
j̃ ̸=j

E
[
n−2 qt

ĩ
(1− qt

j̃
)⟨Kt

j̃
−Kt

ĩ
,Kt

i ⟩2
]
+ 2n−1 E

⟨G−(i,j)
t ,Kt

i ⟩⟨
∑
ĩ ̸=i

∑
j̃ ̸=j

qt
ĩ
(1− qt

j̃
)(Kt

j̃
−Kt

ĩ
),Kt

i ⟩


=
∑
ĩ ̸=i

∑
j̃ ̸=j

E
[
n−2 qt

ĩ
(1− qt

j̃
)⟨Kt

j̃
−Kt

ĩ
,Kt

i ⟩2
]
− 2E[Stn⟨G

−(i,j)
t ,Kt

i ⟩2]
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+ 2n−1 E

⟨G−(i,j)
t ,Kt

i ⟩⟨(1− qtj)
∑
ĩ̸=i

qt
ĩ
Kt
ĩ
− qti

∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃
,Kt

i ⟩


≤ 2(n− 1)

n2

∑
j̃ ̸=j

E
[
⟨Kt

j̃
,Kt

i ⟩2
]
+

2(m− 1)

n2

∑
ĩ ̸=i

E
[
⟨Kt

ĩ
,Kt

i ⟩2
]
− 2E[Stn⟨G

−(i,j)
t ,Kt

i ⟩2]

+ 2n−1 E

⟨G−(i,j)
t ,Kt

i ⟩⟨(1− qtj)
∑
ĩ̸=i

qt
ĩ
Kt
ĩ
− qti

∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃
,Kt

i ⟩


≤ 4 max

k1 ̸=k2
E[k2ζ(Zk1 , Zk2)]− 2E[Stn⟨G

−(i,j)
t ,Kt

i ⟩2]

+ 2n−1 E

⟨G−(i,j)
t ,Kt

i ⟩⟨(1− qtj)
∑
ĩ ̸=i

qt
ĩ
Kt
ĩ
− qti

∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃
,Kt

i ⟩


≤ 4Mκ2(d)ζ

d − 2E
[
Stn⟨G

−(i,j)
t ,Kt

i ⟩2
]

+ 2n−1

√√√√√E
[
⟨G−(i,j)

t ,Kt
i ⟩2
]
E

⟨(1− qtj)
∑
ĩ ̸=i

qt
ĩ
Kt
ĩ
− qti

∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃
,Kt

i ⟩2


≤ 4Mκ2(d)ζ

d − 2E
[
Stn⟨G

−(i,j)
t ,Kt

i ⟩2
]

+ 2
√
2

√√√√√E
[
⟨G−(i,j)

t ,Kt
i ⟩2
]
E

⟨n−1
∑
ĩ ̸=i

qt
ĩ
Kt
ĩ
,Kt

i ⟩2 + ⟨n−1
∑
j̃ ̸=j

(1− qt
j̃
)Kt

j̃
,Kt

i ⟩2


≤ 4Mκ2(d)ζ

d − 2E
[
Stn⟨G

−(i,j)
t ,Kt

i ⟩2
]
+ 4

√
E
[
⟨G−(i,j)

t ,Kt
i ⟩2
]
max
k1 ̸=k2

E[k2ζ(Zk1 , Zk2)]

≤ 4Mκ2(d)ζ
d − 2E

[
Stn⟨G

−(i,j)
t ,Kt

i ⟩2
]
+ 4

√
Mκ2(d)ζd E

[
⟨G−(i,j)

t ,Kt
i ⟩2
]
.

Using again the fact that Stn ≥ nmc
nC+mc , we can employ the previous calculations to show that

2nmc

nC +mc
E
[
⟨G−(i,j)

t ,Ki⟩2
]
≤ 2E

[
Stn⟨G

−(i,j)
t ,Ki⟩2

]
≤ 4Mκ2(d)ζ

d + 4

√
Mκ2(d)ζdE

[
⟨G−(i,j)

t ,Ki⟩2
]

≤ 8max

{
Mκ2(d)ζ

d,

√
Mκ2(d)ζdE

[
⟨G−(i,j)

t ,Ki⟩2
]}

.

Thus, either E[⟨G−(i,j)
t ,Ki⟩2] ≤ 4(C+c)τMκ2(d)ζ

d

cn or 2nmc
nC+mcE[⟨G

−(i,j)
t ,Ki⟩2] ≤ 8

√
Mκ2(d)ζdE[⟨G−(i,j)

t ,Ki⟩2],
which implies that E[⟨G−(i,j)

t ,Ki⟩2] ≤ 16(C+c)2τ2Mκ2(d)ζ
d

c2n2 . This is sufficient to show that E[U2
t ] ≤ Q0

ζd

n2 also

when the second quantity in (31) attains the maximum. Combining this with (32) and (33) gives

max
{
E2[|Uσ|],Var[Uσ]

}
≤ E[U2

σ ] ≤ Q0
ζd

n2
, (34)

and concludes the analysis for the moments for the permuted U-statistic.

• Mean and variance of Uid
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We now proceed with the analysis of the moments of Uid. This would be straightforward if we used the

classical normalisation factors 1
n(n−1) and 1

m(m−1) instead of 1
n2 and 1

m2 , and if λ̂ were not random. The

former problem is easy to address. Define

Ũid =
1

n(n− 1)

n∑
i1 ̸=i2=1

λ̂2r(Xi1)r(Xi2)kζ(Xi1 , Xi2)

{ nm + λ̂r(Xi1)}{ nm + λ̂r(Xi2)}

+
1

m(m− 1)

m∑
j1 ̸=j2=1

kζ(Yj1 , Yj2)

{ nm + λ̂r(Yj1)}{ nm + λ̂r(Yj2)}
− 2

nm

n∑
i=1

m∑
j=1

λ̂r(Xi)kζ(Xi, Yj)

{ nm + λ̂r(Xi)}{ nm + λ̂r(Yj)}
, (35)

and observe that Ũid − Uid equals

1

n2(n− 1)

n∑
i1 ̸=i2=1

λ̂2r(Xi1)r(Xi2)kζ(Xi1 , Xi2)

{ nm + λ̂r(Xi1)}{ nm + λ̂r(Xi2)}
+

1

m2(m− 1)

m∑
j1 ̸=j2=1

kζ(Yj1 , Yj2)

{ nm + λ̂r(Yj1)}{ nm + λ̂r(Yj2)}
.

Due to the boundedness assumption on r, this implies that there exists a constant Q1 ≡ Q1(c, C, τ) > 0 such

that

|E[Uid]−MMD2
r,kζ

(f, g)| ≤ |E[Ũid]−MMD2
r,kζ

(f, g)|+ E[|Uid − Ũid|]

≤ |E[Ũid]−MMD2
r,kζ

(f, g)|+ E

 Q1

n2(n− 1)

n∑
i1 ̸=i2=1

|kζ(Xi1 , Xi2)|+
Q1

m2(m− 1)

m∑
j1 ̸=j2=1

|kζ(Yj1 , Yj2)|


≤ |E[Ũid]−MMD2

r,kζ
(f, g)|+ Q1Mκ1(d)

n
, (36)

and

Var[Uid] ≤ 2Var[Ũid] + 2Var[Uid − Ũid]

≤ 2Var[Ũid] +
Q1

n2

(
max
i1 ̸=i2

E[k2ζ(Xi1 , Xi2)] + max
j1 ̸=j2

E[k2ζ(Yj1 , Yj2)]
)

≤ 2Var[Ũid] +
Q1Mκ2(d)ζ

d

n2
.

(37)

Thus, since the second terms on the right-hand side of (36) and (37) are smaller or equal in order to that

in (34), controlling the mean and variance of Ũid is sufficient to bound those of Uid.

• Mean of Ũid

We now address the harder problem of having λ̂ in Ũid, instead of the non-random quantity λ0 appearing in

the definition of MMD2
r,kζ

(f, g). To overcome this issue, for λ > 0 define

G(λ) :=
1

n(n− 1)

n∑
i1 ̸=i2=1

λ2r(Xi1)r(Xi2)kζ(Xi1 , Xi2)

{n/m+ λr(Xi1)}{n/m+ λr(Xi2)}

+
1

m(m− 1)

m∑
j1 ̸=j2=1

kζ(Yj1 , Yj2)

{n/m+ λr(Yj1)}{n/m+ λr(Yj2)}
− 2

nm

n∑
i=1

m∑
j=1

λr(Xi)kζ(Xi, Yj)

{n/m+ λr(Xi)}{n/m+ λr(Yj)}
,

(38)
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so that Ũid = G(λ̂). By expanding G around λ0 using a Taylor sum up to the second order we get G(λ̂) =

G(λ0) + (λ̂ − λ0)G
′(λ0) +

1
2 (λ̂ − λ0)

2G′′(λ̌), where the random λ̌ is in between λ̂ and λ0. We can use this

identity to bound the mean of Ũid as follows:

|E[G(λ̂)]−MMD2
r,kζ

(f, g)| = |E[G(λ0)]−MMD2
r,kζ

(f, g) + E[(λ̂− λ0)G
′(λ0)] +

1

2
E[(λ̂− λ0)

2G′′(λ̌)]|

≤ |E[(λ̂− λ0)G
′(λ0)]|+ |1

2
E[(λ̂− λ0)

2G′′(λ̌)]| ≤
√

E[(λ̂− λ0)2]E[{G′(λ0)}2] +
1

2

√
E[(λ̂− λ0)4]E[{G′′(λ̌)}2]

≤ Q1

√
1

n
E[{G′(λ0)}2] +Q1

√
1

n2
E[{G′′(λ̌)}2]

= Q1

√
1

n
{E[G′(λ0)]}2 +

1

n
Var[G′(λ0)] +Q1

√
1

n2
E[{G′′(λ̌)}2]. (39)

Note that in the first bound we used the triangle inequality together with the fact that the U-statistic G(λ0)

is unbiased for MMD2
r,kζ

, while in the third one we used Lemma 12. Now, as for the last term, we can use

the fact that 0 < c ≤ r(·) ≤ C to show that the first and second derivatives of λ 7→ λj

{n/m+λr(x)}{n/m+λr(y)}
are uniformly bounded for all λ > 0, x, y ∈ Rd and j ∈ {0, 1, 2}. We can thus argue as we did for the second

term in (37) to get

E[{G′′(λ̌)}2] ≤ Q1 max
k1 ̸=k2

E
[
k2ζ(Zk1 , Zk2)

]
≤ Q1Mκ2(d)ζ

d. (40)

As for the first two terms, observe that G′(λ0) is a two-sample second-order U-statistic with defining kernel

ȟ(x1, x2, y1, y2) = bXX(x1, x2)kζ(x1, x2)+bY Y (y1, y2)kζ(y1, y2)+bXY (x1, y2)kζ(x1, y2)+bXY (x2, y1)kζ(x2, y1),

where
bXX(x1, x2) :=

2λ0r(x1)r(x2)
(n/m+λ0r(x1))(n/m+λ0r(x2))

− λ2
0r

2(x1)r(x2)
(n/m+λ0r(x1))2(n/m+λ0r(x2))

− λ2
0r(x1)r

2(x2)
(n/m+λ0r(x1))(n/m+λ0r(x2))2

bY Y (y1, y2) := − r(y1)
(n/m+λ0r(y1))2(n/m+λ0r(y2))

− r(y2)
(n/m+λ0r(y1))(n/m+λ0r(y2))2

bXY (x1, y2) := − r(x1)
(n/m+λ0r(x1))(n/m+λ0r(y2))

+ λ0r
2(x1)

(n/m+λ0r(x1))2(n/m+λ0r(y2))
+ λ0r(x1)r(y2)

(n/m+λ0r(x1))(n/m+λ0r(y2))2
.

Using again the boundedness assumption on r(·) we have that max{|bXX(·, ·)|, |bY Y (·, ·)|, |bXY (·, ·)|} ≤ Q1.

Now, arguing as in Kim et al. (2022, Equation (69)), we can use Lee (1990, Equation 2 pag. 38) to show

that

Var[G′(λ0)] ≤ Q2

{
σ̌2
10

n
+
σ̌2
01

n
+

(
1

n
+

1

m

)2

σ̌2
22

}

for a sufficiently large universal constant Q2 > 0, where σ̌2
10 = VarX1

[EX2,Y1,Y2
{ȟ(X1, X2, Y1, Y2)}], σ̌2

01 =

VarY1 [EX1,X2,Y2{ȟ(X1, X2, Y1, Y2)}], σ̌2
22 = VarX1,X2,Y1,Y2 [ȟ(X1, X2, Y1, Y2)]. It is immediate to show that

σ̌2
22 ≤ Q1Mκ2(d)ζ

d arguing as in (40), while

σ̌2
10 = VarX1

[EX2
{bXX(X1, X2)kζ(X1, X2)}+ EY2

{bXY (X1, Y2)kζ(X1, Y2)}]

≤ 2EX1 [E2
X2

{bXX(X1, X2)kζ(X1, X2)}+ E2
Y2
{bXY (X1, Y2)kζ(X1, Y2)}]

≤ 2EX1,X2
[b2XX(X1, X2)k

2
ζ(X1, X2)] + 2EX1,Y2

[b2XY (X1, Y2)k
2
ζ(X1, Y2)] ≤ Q1Mκ2(d)ζ

d.

The same holds true for σ̌2
01, and shows that n−1 Var[G′(λ0)] ≤ Q1Mκ2(d)n

−2ζd. Finally, we bound
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the expectation of G′(λ0) by ∥φζ ∗ ψr∥2 up to constants, where ∗ stands for the convolution operator,

ψr =
λ0mrf−mg
n+λ0mr

and φζ(x− y) = kζ(x, y). In this regard, we have

E[G′(λ0)] = E[bXX(X1, X2)] + E[bY Y (Y1, Y2)] + 2E[bXX(X,Y )]

=− E
[

2λ20r
2(X1)r(X2)φζ(X1 −X2)

( nm + λ0r(X1))2(
n
m + λ0r(X2))

]
+ E

[
2λ0r(X1)r(X2)φζ(X1 −X2)

( nm + λ0r(X1))(
n
m + λ0r(X2))

]
− E

[
2r(Y1)φζ(Y1 − Y2)

( nm + λ0r(Y1))2(
n
m + λ0r(Y2))

]
− E

[
2r(X)φζ(X − Y )

( nm + λ0r(X))( nm + λ0r(Y ))

]
+ E

[
2λ0r

2(X)φζ(X − Y )

( nm + λ0r(X))2( nm + λ0r(Y ))

]
+ E

[
2λ0r(X)r(Y )φζ(X − Y )

( nm + λ0r(X))( nm + λ0r(Y ))2

]
=

∫
Rd

2r(x)f(x)

( nm + λ0r(x))

(∫
Rd

φζ(x− y)

{
λ0r(y)f(y)

( nm + λ0r(y))
− g(y)

( nm + λ0r(y))

}
dy

)
dx

−
∫
Rd

2λ0r
2(x)f(x)

( nm + λ0r(x))2

(∫
Rd

φζ(x− y)

{
λ0r(y)f(y)

( nm + λ0r(y))
− g(y)

( nm + λ0r(y))

}
dy

)
dx

+

∫
Rd

2r(x)g(x)

( nm + λ0r(x))2

(∫
Rd

φζ(x− y)

{
λ0r(y)f(y)

( nm + λ0r(y))
− g(y)

( nm + λ0r(y))

}
dy

)
dx

=

∫
Rd

{
2r(x)f(x)

( nm + λ0r(x))
− 2λ0r

2(x)f(x)

( nm + λ0r(x))2
+

2r(x)g(x)

( nm + λ0r(x))2

}
(φζ ∗ ψr)(x)dx

≤
∫
Rd

∣∣∣∣ 2r(x)f(x)

( nm + λ0r(x))
− 2λ0r

2(x)f(x)

( nm + λ0r(x))2
+

2r(x)g(x)

( nm + λ0r(x))2

∣∣∣∣ |(φζ ∗ ψr)(x)|dx ≤ Q1∥φζ ∗ ψr∥2. (41)

Combining this with (36), (39) and (40) enables to conclude the analysis of the first moment of Uid, showing

that

|E[Uid]−MMD2
r,kζ

(f, g)| ≤ Q0

√
n−2ζd + n−1∥φζ ∗ ψr∥22. (42)

•Variance of Ũid

Using the second-order Taylor approximation of G(λ̂) around λ0 gives

Var[Ũid] ≤ 4Var[G(λ0)] + 4Var[(λ̂− λ0)G
′(λ0)] +

1

2
Var[(λ̂− λ0)

2G′′(λ̌)]

≤ Q0(n
−2ζd + n−1∥φζ ∗ ψr∥22) + 4E[(λ̂− λ0)

2 {G′(λ0)}2] +
1

2
E[(λ̂− λ0)

4 {G′′(λ̌)}2]

≤ Q0(n
−2ζd + n−1∥φζ ∗ ψr∥22) + 4

√
E[(λ̂− λ0)4]E[{G′(λ0)}4] +

1

2

√
E[(λ̂− λ0)8]E[{G′′(λ̌)}4]

≤ Q0(n
−2ζd + n−1∥φζ ∗ ψr∥22) +Q1

√
n−2 E[{G′(λ0)}4] +Q1

√
n−4 E[{G′′(λ̌)}4]. (43)

Note that the second inequality can be proved following similar lines as in Schrab et al. (2023, Proposition 3),

while the last one follows from Lemma 12. Similarly to (40) and (41), we need to control fourth-order

moments of some derivatives ofG. Starting from the term involvingG′′, we can argue similarly to (40) to show

E[{G′′(λ̌)}4] ≤ Q1n
−8 E[{

∑
k1 ̸=k2 |kζ(Zk1 , Zk2)|}

4] ≤ Q1n
−4 E[

∑
k1 ̸=k2

∑
k3 ̸=k4 k

2
ζ(Zk1 , Zk2)k

2
ζ(Zk3 , Zk4)]. It

is now just a matter of counting what is the contribution of each term in the sum, depending on how

many indices are shared. In this regard, observe that we have O(n4) terms like E[k2ζ(Z1, Z2)k
2
ζ(Z3, Z4)] =

E[k2ζ(Z1, Z2)]E[k2ζ(Z3, Z4)] ≤M2κ22(d)ζ
2d, O(n2) terms like E[k4ζ(Z1, Z2)] ≤Mκ4(d)ζ

3d and O(n3) terms like

E[k2ζ(Z1, Z2)k
2
ζ(Z1, Z3)] = E[E[k2ζ(Z1, Z2) |Z1]E[k2ζ(Z1, Z3) |Z1]] ≤ M2κ22(d)ζ

2d. Since ζd/n2 = n−
8s

4s+d ≤ 1
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for our specific choice of ζ, this suffices to show that
√
n−4 E[{G′′(λ̌)}4] ≤ Q0n

−2ζd.

As for the term involving the first derivative of G, we have E[{G′(λ0)}4] ≤ 8E[{G′(λ0) − EG′(λ0)}4] +
8{EG′(λ0)}4 ≤ 8E[{G′(λ0) − EG′(λ0)}4] + Q1∥φζ ∗ ψr∥42. Hence, it just remains to bound the first term

on the right-hand side. Define hXX(X1, X2) := bXX(X1, X2)kζ(X1, X2) − E[bXX(X1, X2)kζ(X1, X2)] and

similarly for hY Y and hXY . We thus have

E[{G′(λ0)− EG′(λ0)}4]

= E


 1

n(n− 1)

∑
i1 ̸=i2

hXX(Xi1 , Xi2) +
1

m(m− 1)

∑
j1 ̸=j2

hY Y (Yj1 , Yj2)−
2

nm

∑
i ̸=j

hXY (Xi, Yj)


4


≤ 32E


 1

n(n− 1)

∑
i1 ̸=i2

hXX(Xi1 , Xi2)


4
+ 32E


 1

m(m− 1)

∑
j1 ̸=j2

hY Y (Yj1 , Yj2)


4


+ 32E


 1

nm

∑
i ̸=j

hXY (Xi, Yj)


4
 . (44)

These three terms can be bounded by almost identical arguments so we focus on the first. We expand it

as n−4(n − 1)−4
∑
i1 ̸=i2

∑
i3 ̸=i4

∑
i5 ̸=i6

∑
i7 ̸=i8 E[hXX(Xi1 , Xi2)hXX(Xi3 , Xi4)hXX(Xi5 , Xi6)hXX(Xi7 , Xi8)]

and use a combinatorial argument to derive an upper bound. In this regard, we have O(n8) terms with all

distinct indices and O(n7) terms with seven distinct indices, but they do not contribute to the sum since their

expectations are zero. This is due to the independence among the X’s and the fact that E[hXX(X1, X2)] = 0.

Moreover, we have

E[hXX(Xi1 , Xi2)hXX(Xi3 , Xi4)hXX(Xi5 , Xi6)hXX(Xi7 , Xi8)] ≤ E[h4XX(X1, X2)]

= E[{bXX(X1, X2)kζ(X1, X2)− E[{bXX(X1, X2)kζ(X1, X2)]}4] ≤ 16E[b4XX(X1, X2)k
4
ζ(X1, X2)]

≤ Q1E[k4ζ(X1, X2)] ≤ Q1Mκ4(d)ζ
3d,

where in first inequality we used the Cauchy-Schwarz inequality, while in the second inequality we used the

fact that for X,X ′ independent and identically distributed we have E[(X − EX)4] ≤ 16E[X4]. Based on

this, the contribution of the O(n4) terms with four or less distinct indices is bounded above by n−4ζ3d. It

remains to bound those terms in which there are five or six different indices. As for the latter case, the only

non-zero terms are of the form

E[hXX(X1, X2)hXX(X1, X3)hXX(X4, X5)hXX(X4, X6)]

= E[hXX(X1, X2)hXX(X1, X3)]E[hXX(X4, X5)hXX(X4, X6)] = E2[hXX(X1, X2)hXX(X1, X3)]

= E2[E[hXX(X1, X2) | X1]E[hXX(X1, X3) | X1]] ≤ E2[E2[hXX(X1, X2) | X1]]

= E2[E2[ { bXX(X1, X2)kζ(X1, X2)− E[bXX(X1, X2)kζ(X1, X2)] } | X1]]

≤ 8E2[E2[bXX(X1, X2)kζ(X1, X2) | X1]] + 8E4[bXX(X1, X2)kζ(X1, X2)]

≤ Q1E2[E2[|kζ(X1, X2)| | X1]] +Q1E4[|kζ(X1, X2)|] ≤ Q1M
4κ41(d),
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and since there are O(n6) of these terms, their contribution is of the order n−2. Finally, when there are

exactly five distinct indices we can have three different typical terms:

1. E[hXX(X1, X2)hXX(X1, X3)hXX(X1, X4)hXX(X1, X5)] = E[E4[hXX(X1, X2) | X1]] ≤ Q1M
4κ41(d);

2.
E[h2XX(X1, X2)hXX(X3, X4)hXX(X3, X5)] = E[h2XX(X1, X2)]E[hXX(X3, X4)hXX(X3, X5)]

= E[h2XX(X1, X2)] E[E2[hXX(X3, X4) | X3]] ≤ Q1M
3κ21(d)κ2(d)ζ

d;

3.

E[hXX(X1, X2)hXX(X1, X3)hXX(X1, X4)hXX(X2, X5)]

= E[E[hXX(X1, X2)hXX(X1, X3)hXX(X1, X4)hXX(X2, X5) | X1, X2]]

≤ E[|hXX(X1, X2)| · E2[|hXX(X1, X3)| | X1] · E[|hXX(X2, X5)| | X2]] ≤ Q1M
4κ41(d);

There are O(n5) of these terms, hence their contribution is of the order ζdn−3. Overall, since ζd/n2 ≤ 1 for

our specific choice of ζ, we thus have that
√
n−2E[{G′(λ0)}4] ≤ Q0

(
n−2ζd + n−1∥φζ ∗ ψr∥22

)
, which further

shows that

Var[Uid] ≤ Q0

{
ζd

n2
+

∥φζ ∗ ψr∥22
n

}
when combined with (37), (43), and (44). This concludes the analysis for the first two moments of the

non-permuted sample.

• Relating the squared Shifted-MMD to the L2 distance

Applying the previous argument with (27), (34) and (42) and using the fact that
√
x+ y ≤

√
x +

√
y for

x, y ≥ 0 shows that a uniform control of the Type-I and Type-II errors is possible whenever

MMD2
r,kζ

(f, g) ≥ Q0

{
ζd/2

n
+

∥φζ ∗ ψr∥2√
n

}
.

We now conclude the proof by relating the squared Shifted-MMD metric to the L2 distance defined in (13),

thus providing an upper bound on ρ∗r . We have

MMD2
r,kζ

(f, g) =

∫
Rd

∫
Rd

φζ(x− y)ψr(x)ψr(y)dxdy =

∫
Rd

ψr(x)(φζ ∗ ψr)(x)dx

= ⟨ψr, φζ ∗ ψr⟩2 =
1

2

(
∥ψr∥22 + ∥φζ ∗ ψr∥22 − ∥ψr − φζ ∗ ψr∥22

)
,

hence an equivalent sufficient condition to bound the total error is given by

∥ψr∥22 ≥ ∥ψr − φζ ∗ ψr∥22 +Q0
ζd/2

n
+Q0

∥φζ ∗ ψr∥2√
n

− ∥φζ ∗ ψr∥22.

This can be further simplified to just ∥ψr∥22 ≥ ∥ψr − φζ ∗ ψr∥22 +Q0 n
−1ζd/2 in light of the fact that√

Q2
0∥φζ ∗ ψr∥22

n
− ∥φζ ∗ ψr∥22 ≤ Q2

0

n
+ ∥φζ ∗ ψr∥22 − ∥φζ ∗ ψr∥22 ≤ Q2

0ζ
d/2

n
,

as ζ ≥ 1 and
√
xy ≤ x + y for x, y ≥ 0. Furthermore, we can argue exactly as in Schrab et al. (2023,

Theorem 6) and show that if ψr ∈ Ssd(L) we have ∥ψr −φζ ∗ψr∥22 ≤ Q3∥ψr∥22 +Q4 ζ
−2s, for some constants
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Q3 ∈ (0, 1) and Q4 ≡ Q4(d, s, L) > 0. This shows that for ζ = n
2

4s+d there exists a constant Cr ≡
Cr(c, C, d, τ,M, s, L, α, β) such that

ρ∗r ≤ Cr

√
ζd/2

n
+ ζ−2s = Cr n

− 2s
4s+d ,

and completes the proof.

Lemma 13. Fix subsets Ī ⊆ [n] and J̄ ⊆ {n + 1, . . . , n + m}, and modify Step 3 of Algorithm 1 to be:

Sample a vector of couples τt = {(it1, jt1), . . . , (itK , jtK)} such that (it1, . . . , i
t
K) are sampled uniformly and

without replacement from [n] \ Ī, and (jt1, . . . , j
t
K) are sampled uniformly and without replacement from

{n+1, . . . , n+m} \ J̄ . Keep all the other steps the same. Then this algorithm still has (4) as its stationary

distribution.

Proof. The key observation to make here is that all the steps that led to (18) in the proof of Proposition 2

remain valid in this other setting. The only difference lies in the fact that the Markov chain associated

with this new algorithm is not irreducible, and hence it will not converge to (4) if we let it run long

enough. Nonetheless, (4) is still a stationary distribution, and we will now show this by proving a detailed

balance condition. Let K = min{n − #Ī ,m − #J̄} and let P̃ be the set of all K couples of the form

{(i1, j1), . . . , (iK , jK)} such that (i1, . . . , iK) contains distinct elements from [n]\ Ī, and (j1, . . . , jK) contains

distinct elements from {n+ 1, . . . , n+m} \ J̄ . For all t ∈ N+ and all permutations p, p′, we have

P {Pt = p′ | Pt−1 = p} =
1

|P̃|

∑
τ∈P̃

P {Pt = p′ | Pt−1 = p, τt = τ} ,

since at each time t this new algorithm draws τt ∈ P̃ uniformly at random. Next, given τt = τ and Pt−1 = p,

it must be the case that Pt satisfies Pt ∼τ p, since this new algorithm still uses Steps 4-5 of Algorithm 1.

Arguing as in (17) gives
P {Pt = p′ | Pt−1 = p, τt = τ}
P {Pt = p′′ | Pt−1 = p, τt = τ}

=
P {P = p′}
P {P = p′′}

,

which implies that

P {Pt = p′ | Pt−1 = p} =
1

|P̃|

∑
τ∈P̃

1 {p′ ∼τ p} · P {P = p′}∑
p′′ 1 {p′′ ∼τ p} · P {P = p′′}

.

This concludes the proof by analogous calculations to those in (18).

Proof of Theorem 10. For simplicity, we assume n = m throughout the proof. The more general case

m ≤ n ≤ τm corresponds to a simpler problem, as it involves a larger sample size; thus, the lower bound

derived here remains valid in that setting. For varying densities p, q on Rd define the set

S̃rθ (ρ) := Srθ (ρ) ∩
{
(f ≡ fp, g ≡ gq) : fp = γp

p

r

(
1 + r

γq
γp

)
, gq = γqq

(
1 + r

γq
γp

)}
⊆ Srθ (ρ), (45)

where γp =
√
B

A
√
B+

√
A

and γq =
√
A

A
√
B+

√
A
, with A =

∫
Rd p(x)/r(x)dx and B =

∫
Rd q(x)r(x)dx. One can

easily check that
∫
Rd fp(x)dx =

∫
Rd gq(x)dx = 1 for this specific choice of γp and γq. As a result, for any
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test φ ∈ Ψ(α), and for all prior distributions µ0, µ1 supported on H0 and S̃rθ (ρ), respectively, Equation (45)

shows that we can bound the total error probability as

α+ sup
(f,g)∈Sr

θ (ρ)

EP (1− φ) ≥ sup
g∝ rf

EP φ+ sup
(f,g)∈Sr

θ (ρ)

EP (1− φ)

≥ sup
g∝ rf

EP φ+ sup
(f,g)∈S̃r

θ (ρ)

EP (1− φ) ≥ Eµ0
{EP φ}+ Eµ1

{EP (1− φ)} ≥ 1− TV(Eµ0
P,Eµ1

P ), (46)

where we recall that P = P⊗n
f ⊗P⊗n

g . This demonstrates that controlling the total variation distance above

is sufficient to obtain a lower bound on ρ∗r . We proceed to do so for specific choices of µ0 and µ1, using a

classical perturbation-based method originating from Ingster (1987) and recently employed in two-sample

and independence testing problems in Albert et al. (2022) and Li and Yuan (2024). Start by considering

q0(x) = q1(x) = p0(x) = 1{x ∈ [0, 1]d} and define Ai =
∫
Rd pi(x)/r(x)dx and Bi =

∫
Rd qi(x)r(x)dx for

i ∈ {0, 1}. We can assume without loss of generality that
∫
[0,1]d

r(x)dx = 1 so that B0 = B1 = 1; otherwise,

since the problem is scale invariant, we might replace r with r/
∫
[0,1]d

r(x)dx without affecting the minimax

separation. Finally, define p1 to be a perturbation of p0 of the following form. Let M̃ be as in (53), fix

B1/d
n =

( √
c(2π)d/2L

2
√
2(1 + c) M̃ρ

)1/s
 and δn =

√
8(1 + c)

c
ρB−1/2

n ,

and consider {ϕ1, . . . , ϕBn
} as in (52) in the proof of Lemma 14, i.e. an orthonormal set of functions in

L2(Rd) whose supports are disjoint and contained in [0, 1]d, and satisfy∫
Rd

ϕk(x)dx =

∫
Rd

ϕk(x)

r(x)
dx = 0 for all k ∈ [Bn]. (47)

It is convenient to recall that the ϕk’s are of the form ϕk(x) =
B1/2

n

∥ϕ0,k∥2
ϕ0,k
(
B

1/d
n {x− x0k}

)
, where x0k is the

lower-left corner of their support, and the ϕ0,k’s satisfy maxk∈[Bn]

{
∥ϕ0,k∥Ss

d

∥ϕ0,k∥2
∨ ∥ϕ0,k∥∞

∥ϕ0,k∥2

}
≤ M̃ , with ∥ · ∥Ss

d

defined in (49). Based on this, we define

p1(x) ≡ p1,a(x) = p0(x) + δn

Bn∑
k=1

ak ϕk(x), (48)

where a = (a1, . . . , aBn
) is a collection of i.i.d. Rademacher random variables, meaning that P{ak = 1} =

P{ak = −1} = 1/2 for all k ∈ [Bn].

With these definitions in mind, let fi := fpi and gi := gqi for i ∈ {0, 1}, with fp, gp as in (45). Now, it is

clear that (f0, g0) satisfy the null, thus we just need to check that (f1, g1) ∈ S̃rθ (ρ) for all a ∈ {±1}Bn , which is

required to ensure that the distribution µ1 that assigns equal probability to each of them is indeed supported

on S̃rθ (ρ). We may assume that ∥f1∥∞ ∨ ∥g1∥∞ ≤M ; otherwise, it suffices to choose p0(x) = 1{x ∈ [0, u]d}
for u ≥ 1 sufficiently large and construct a perturbed version of it as in (48). This is clearly sufficient for g1,

since the prefactor of q in the definition of gq in (45) depends on r, which is uniformly bounded. A similar
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argument applies to f1, taking into account that the magnitudes of the bumps are bounded as

∥δn
Bn∑
k=1

akϕk∥∞ ≤ δn
Bn
max
k=1

∥ϕk∥∞ ≤ δnB
1/2
n

Bn
max
k=1

∥ϕ0,k∥∞
∥ϕ0,k∥2

≤ M̃δnB
1/2
n ≲ ρ ≲ 1.

As for the conditions involving ψr, observe that

ψr =
λ0rf1 − g1
1 + λ0r

=
1 + r γq1/γp1

1 + λ0r
(λ0γp1p1 − γq1q1) = γq1(p1 − q1),

since λ0 = γq1/γp1 satisfies
∫
Rd ψr(x)dx = 0. Hence we need to verify that γq1∥p1−q1∥2 > ρ and γq1(p1−q1) ∈

Ssd(L). Start by noticing that for all a ∈ {±1}Bn we have

1 ≥ γ2q1 = (
√
A1 + 1)−2 ≥ (2A1 + 2)−1 ≥ c

2(1 + c)
,

as

A1 =

∫
Rd

p1(x)

r(x)
dx =

∫
Rd

p0(x) + δn
∑Bn

k=1 ak ϕk(x)

r(x)
dx

(47)
=

∫
Rd

p0(x)

r(x)
dx ≤ 1

c
.

Then, as for the condition involving the L2-norm of ψr, we have

γ2q1∥p1 − q1∥22 = γ2q1

∥∥∥∥∥δn
Bn∑
k=1

ak ϕk

∥∥∥∥∥
2

2

= γ2q1δ
2
n

∥∥∥∥∥
Bn∑
k=1

ak ϕk

∥∥∥∥∥
2

2

= γ2q1δ
2
n

∫
Rd

(
Bn∑
k=1

ak ϕk(x)

)2

dx

= γ2q1δ
2
n

Bn∑
k=1

a2k

∫
Rd

ϕ2k(x)dx = γ2q1δ
2
nBn ≥ c

2(1 + c)
δ2nBn = 4ρ2 > ρ2

for our particular choice of δn and Bn. As for the smoothness condition, define for notational convenience

the norm

∥p∥2Ss
d
:=

∫
Rd

∥ξ∥2s2 |p̂(ξ)|2 dξ, (49)

so that Ssd(L) = {p ∈ L1(Rd)∩L2(Rd) : ∥p∥2Ss
d
≤ (2π)dL2}. Furthermore, since the iterated Laplacian (−∆)s

of order s ∈ N+ is the Fourier multiplier with symbol ∥ξ∥2s2 , Plancherel’s theorem gives∫
Rd

∥ξ∥2s2 ϕ̂1(ξ) ϕ̂2(ξ) dξ =

∫
Rd

(−∆)sϕ1(x)ϕ2(x) dx = 0,

since (−∆)sϕ1 is a combination of derivatives of ϕ1 of order 2s, and ϕ1, ϕ2 have disjoint supports. This

implies that

γ2q1 ∥p1 − q1∥2Ss
d
≤ ∥p1 − q1∥2Ss

d
=

∥∥∥∥∥δn
Bn∑
k=1

ak ϕk

∥∥∥∥∥
2

Ss
d

= δ2n

∥∥∥∥∥
Bn∑
k=1

ak ϕk

∥∥∥∥∥
2

Ss
d

= δ2n

∫
Rd

∥ξ∥2s2

∣∣∣∣∣
Bn∑
k=1

ak ϕ̂k(ξ)

∣∣∣∣∣
2

dξ
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≤ δ2nBn
Bn
max
k=1

∫
Rd

∥ξ∥2s2
∣∣∣ ϕ̂k(ξ)∣∣∣2 dξ = δ2nBn

Bn
max
k=1

∫
Rd

∥ξ∥2s2

∣∣∣∣∣∣
̂

B
1/2
n

∥ϕ0,k∥2
ϕ0,k(B

1/d
n {· − x0k})(ξ)

∣∣∣∣∣∣
2

dξ

= δ2nBn
Bn
max
k=1

∫
Rd

∥ξ∥2s2

∣∣∣∣∣ B−1/2
n

∥ϕ0,k∥2
e−i⟨ξ,x

0
k⟩ϕ̂0,k(ξ/B

1/d
n )

∣∣∣∣∣
2

dξ =
Bn
max
k=1

δ2n
∥ϕ0,k∥22

∫
Rd

∥ξ∥2s2
∣∣∣ϕ̂0,k(ξ/B1/d

n )
∣∣∣2 dξ

=
Bn
max
k=1

δ2n
∥ϕ0,k∥22

∫
Rd

∥B1/d
n ξ∥2s2

∣∣∣ϕ̂0,k(ξ)∣∣∣2Bn dξ = δ2nB
2s+d

d
n

Bn
max
k=1

∥ϕ0,k∥2Ss
d

∥ϕ0,k∥22
≤ M̃2δ2nB

2s+d
d

n ≤ (2π)dL2

for our particular choice of δn and Bn.

It remains to control the total variation in (46) for this specific choice of µ1, δn and Bn, and assess for

which values of ρ we can bound it above by 1 − α − β. Writing f1 ≡ f1,a and g1 ≡ g1,a to highlight their

dependence on a ∈ {±1}d through p1, and using χ2 for the chi-square divergence, we look at

4TV2(P⊗n
f0

⊗ P⊗n
g0 ,Ea{P⊗n

f1
⊗ P⊗n

g1 }) = 4TV2

P⊗n
f0

⊗ P⊗n
g0 , 2−Bn

∑
a∈{±1}d

P⊗n
f1,a

⊗ P⊗n
g1,a


≤ χ2

P⊗n
f0

⊗ P⊗n
g0 , 2−Bn

∑
a∈{±1}d

P⊗n
f1,a

⊗ P⊗n
g1,a


= 2−2Bn

∑
a1,a2∈{±1}d

∫
R2nd

 n∏
i=1

f1,a1(xi)

f0(xi)

n∏
j=1

g1,a1(yj)

g0(yj)

 n∏
i=1

f1,a2(xi)

f0(xi)

n∏
j=1

g1,a2(yj)

g0(yj)

 dP0

= 2−2Bn

∑
a1,a2∈{±1}d

(
n∏
i=1

∫
Rd

f1,a1(xi)

f0(xi)

f1,a2(xi)

f0(xi)
f0(xi)dxi

) n∏
j=1

∫
Rd

g1,a1(yj)

g0(yj)

g1,a2(yj)

g0(yj)
g0(yj)dyj


= 2−2Bn

∑
a1,a2∈{±1}d

(∫
Rd

f1,a1(x1)

f0(x1)

f1,a2(x1)

f0(x1)
f0(x1)dx1

)n(∫
Rd

g1,a1(y1)

g0(y1)

g1,a2(y1)

g0(y1)
g0(y1)dy1

)n
(50)

where we set dP0 =
∏n
i=1 f0(xi)

∏n
j=1 g0(yj)dxdy. We now focus on controlling the integrals in the last

display. As for the latter, Equation (47) implies that A0 = A1, hence γp1 = γp0 and γq1 = γq0 . This gives
g1,a(y1)
g0(y1)

= 1{x ∈ [0, 1]d} for all a ∈ {±1}d, and further shows that the second integral in (50) is equal to one.

As for the other one, similar calculations show that

∫
Rd

f1,a1(x)

f0(x)

f1,a2(x)

f0(x)
f0(x)dx =

∫
Rd

(
1 + δn

Bn∑
k=1

a1,k
ϕk(x)

p0(x)

)(
1 + δn

Bn∑
k=1

a2,k
ϕk(x)

p0(x)

)
f0(x)dx

= 1 + δ2n

Bn∑
k=1

a1,ka2,k

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx+ δn

Bn∑
k=1

(a1,k + a2,k)

∫
Rd

ϕk(x)

p0(x)
f0(x)dx

= 1 + δ2n

Bn∑
k=1

a1,ka2,k

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx+ δn

Bn∑
k=1

(a1,k + a2,k)

∫
Rd

ϕk(x)

p0(x)

p0(x)

r(x)
(γp0 + r γq0)dx

= 1 + δ2n

Bn∑
k=1

a1,ka2,k

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx+ δn

Bn∑
k=1

(a1,k + a2,k)

{
γp0

∫
Rd

ϕk(x)

r(x)
dx+ γq0

∫
Rd

ϕk(x)dx

}
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= 1 + δ2n

Bn∑
k=1

a1,ka2,k

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx (51)

where the second equality follows from the fact that ϕk1 and ϕk2 have disjoint support when k1 ̸= k2, and

the final equality uses condition (47). Combining (50) with (51) then shows

4TV2(P⊗n
f0

⊗ P⊗n
g0 ,Ea{P⊗n

f1
⊗ P⊗n

g1 }) ≤ 2−2Bn

∑
a1,a2∈{±1}d

(
1 + δ2n

Bn∑
k=1

a1,ka2,k

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx

)n

= Ea1,a2

[(
1 + δ2n

Bn∑
k=1

a1,ka2,k

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx

)n]
= Ea

[(
1 + δ2n

Bn∑
k=1

ak

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx

)n]

≤ Ea

[
exp

{
n δ2n

Bn∑
k=1

ak

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx

}]
=

Bn∏
k=1

cosh

(
n δ2n

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx

)

≤ exp

{
1

2
Bnn

2δ4n

(
Bn
max
k=1

∫
Rd

ϕ2k(x)

p20(x)
f0(x)dx

)2
}

= exp

{
1

2
Bnn

2δ4n

(
Bn
max
k=1

∫
Rd

γp0 + r(x)γq0
r(x)

ϕ2k(x)dx

)2
}

≤ exp

{
C + c2

c2
Bnn

2δ4n

}
,

where in the last step we used the fact that c ≤ r(·) ≤ C together with γq0 = (
√
A0 + 1)−1 ≤ 1 and

γp0 = A
−1/2
0 γq0 ≤ A

−1/2
0 = {

∫
Rd p0(x)/r(x)}−1/2 ≤

√
C. Now, being Bnn

2δ4n of the order n2ρ
4s+d

s , the

previous shows that there exists a constant cr = cr(c, C, θ, α, β) for which the previous display is upper

bounded by 1− α− β whenever ρ ≤ crn
−2s/(4s+d). This concludes the proof.

Lemma 14. Let r : Rd → R+ be such that 0 < c ≤ r(x) ≤ C for all x ∈ Rd. Fix an integer Bn ≥ 1 such

that B
1/d
n ∈ N+ and write bn := B

−1/d
n . Partition [0, 1]d into the Bn disjoint cubes

Qk =

d∏
j=1

[ijbn, (ij + 1)bn), with k = (i1, . . . , id) ∈ {0, . . . , b−1
n − 1}d,

and denote the lower–left corner of Qk by x0k. There exist functions {ϕ0,1, . . . , ϕ0,Bn
} supported on [0, 1]d

satisfying the following conditions:

(i) For all k ∈ [Bn]

ϕk(x) =
B

1/2
n

∥ϕ0,k∥2
ϕ0,k
(
B1/d
n {x− x0k}

)
is C∞(Rd) and satisfies∫

Rd

ϕk(x) dx =

∫
Rd

ϕk(x)

r(x)
dx = 0, ∥ϕk

∥∥
2
= 1, suppϕk ⊆ Qk;

(ii) There exist a constant M̃ > 0 such that

Bn
max
k=1

{∥ϕ0,k∥Ss
d

∥ϕ0,k∥2
∨ ∥ϕ0,k∥∞

∥ϕ0,k∥2

}
≤ M̃.
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Proof. We will start by proving part (i). Consider the standard C∞(R) bump

η(t) :=

exp
(
− 1

1−t2

)
, |t| < 1,

0, |t| ≥ 1,

and define f+(y1) = η(6y1− 1), f−(y1) = η(6y1− 3) and f0(y1) = η(6y1− 5). It is immediate to see that f+,

f− and f0 are supported on [0, 13 ], [
1
3 ,

2
3 ] and [ 23 , 1], respectively. Based on this, define three bumps in Rd by

ϕ+(y) = f+(y1)

d∏
l=2

η(yl), ϕ−(y) = f−(y1)

d∏
l=2

η(yl), ϕ0(y) = f0(y1)

d∏
l=2

η(yl)

for all y = (y1, . . . , yd) ∈ Rd, and observe that all three functions are in C∞(Rd) and supported in [0, 13 ] ×
[0, 1]d−1, [ 13 ,

2
3 ]×[0, 1]d−1 and [ 23 , 1]×[0, 1]d−1, respectively. Fix a cubeQk and write points in it as x = x0k+bny

with y ∈ [0, 1]d. Because r−1 is bounded on Qk, each of the numbers

ak =

∫
Rd

ϕ+(y)

r(x0k + bny)
dy, bk =

∫
Rd

ϕ−(y)

r(x0k + bny)
dy, ck =

∫
Rd

ϕ0(y)

r(x0k + bny)
dy

is finite and strictly positive. If ak ̸= bk, set

uk =
bk − ck
bk − ak

, vk =
ak − ck
bk − ak

, wk = 1 and ϕ0,k(y) = uk ϕ+(y)− vk ϕ−(y)− wkϕ0(y).

If instead ak = bk but ak ̸= ck, we switch the roles of ϕ− and ϕ0 and apply the same formula. Finally, if

ak = bk = ck, we simply set uk = wk = 1 and vk = 0, so thaty ϕ0,k(y) = ϕ+(y)− ϕ0(y). A straightforward

calculation shows that ϕ0,k has zero average both with respect to Lebesgue measure and with respect to the

weight r−1 evaluated at x0k + bny:∫
Rd

ϕ0,k(y) dy =

(∫
Rd

ϕ+(y) dy

)
(uk − vk − wk) = 0,

∫
Rd

ϕ0,k(y)

r(x0k + bny)
dy = ukak − vkbk − wkck = 0.

We now verify that the function

ϕk(x) :=
B

1/2
n

∥ϕ0,k∥2
ϕ0,k
(
B1/d
n {x− x0k}

)
(52)

satisfies the desired properties. Because dx = bdndy = B−1
n dy, the two zero–average identities above translate

to the x-scale, yielding ∫
Rd

ϕk(x) dx =

∫
Rd

ϕk(x)

r(x)
dx = 0.

Moreover ∥ϕk∥22 = Bn ∥ϕ0,k∥−2
2 B−1

n ∥ϕ0,k∥22 = 1. Finally, the support of ϕk is contained in Qk, and different

cubes do not intersect, hence for k1 ̸= k2 we also have ⟨ϕk1 , ϕk2⟩2 = 0. This completes the proof of the of

first part of the statement.

As for part (ii), set Jℓ := ∥ϕ+∥ℓ = ∥ϕ−∥ℓ = ∥ϕ0∥ℓ for ℓ ∈ {∞, 2,Ssd}, and observe that these constants

59



depend only on the shape of the function η. The disjoint structure of the supports of ϕ+, ϕ−, ϕ0 gives
∥ϕ0,k∥∞ = J∞ max{|uk|, |vk|, |wk|}

∥ϕ0,k∥2 = J2
√
u2k + v2k + w2

k

∥ϕ0,k∥Ss
d
= JSs

d

√
u2k + v2k + w2

k

for all k ∈ [Bk], and implies that

∥ϕ0,k∥Ss
d

∥ϕ0,k∥2
=
JSs

d

J2
and

∥ϕ0,k∥∞
∥ϕ0,k∥2

=
J∞ max{|uk|, |vk|, |wk|}
J2
√
u2k + v2k + w2

k

≤ J∞(|uk|+ |vk|+ |wk|)
J2
√
u2k + v2k + w2

k

≤
√
3J∞
J2

.

Note the denominator is always well-defined for our choices of (uk, vk, wk) as u
2
k + v2k + w2

k ≥ 1. This shows

that the claim in part (ii) holds with

M̃ :=
JSs

d

J2
∨

√
3J∞
J2

(53)

and concludes the proof of the lemma.

A.3 Proofs for Section 4

Proof of Proposition 11. The reason we cannot directly apply Theorem 1 or Proposition 3 is that, although

HR
0 holds for a certain r⋆, the DRPT procedure now generates Z(1), . . . , Z(H) using an approximation r̂ to

r⋆. To address this mismatch, let X̃ = (X̃1, . . . , X̃n), Ỹ = (Ỹ1, . . . , Ỹm) be such that X̃ ⊥⊥ Ỹ , X̃i
i.i.d.∼ f and

Ỹi
i.i.d.∼ r̄ f . Define Z̃ = (X̃, Ỹ ) and let Z̃(1), . . . , Z̃(H) be draws of the DRPT based on r̂ when we sample

from the values of Z̃ instead of Z. That is, for every h ∈ [H] independently we have

Z̃(h) = Z̃(P̃ (h)) where P
{
P̃ (h) = p | Z̃()

}
∝

∏
i∈{n+1,...,n+m}

r̂(Z̃(p(i))),

where Z̃() and Z̃(p) are defined analogously to Z() and Z(p). Next, by comparing to the DRPT sampling

mechanism (4), we observe that the Z̃(h)’s, conditional on Z̃, are generated with the same mechanism as the

Z(h)’s conditional on Z. That is, for every z ∈ Xn × Ym we have(
(Z̃(1), . . . , Z̃(H)) | Z̃ = z

)
d
=
(
(Z(1), . . . , Z(H)) | Z = z

)
.

We can verify this also for the exchangeable sampler (Algorithm 2) with a generic parameter S ≥ 1. We can

now use the fact that, if (V | U = u)
d
= (V ′ | U ′ = u) for all u, then TV((U, V ), (U ′, V ′)) = TV(U,U ′). It

follows that

TV
(
(Z̃, Z̃(1), . . . , Z̃(H)) , (Z,Z(1), . . . , Z(H))

)
= TV(Z̃, Z) = TV

(
(X̃, Ỹ ), (X,Y )

)
= TV(Ỹ , Y ) = TV

(
{r̄ · f}⊗m, {r̄⋆ · f}⊗m

)
. (54)
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We are now in the position to conclude the proof. If we define

Aα :=

{
(z, z(1), . . . , z(H)) :

1 +
∑H
h=1 1{T (z(h)) ≥ T (z)}

1 +H
≤ α

}
,

we can bound the Type-I error as

P{p ≤ α} = P{(Z,Z(1), . . . , Z(H)) ∈ Aα}

≤ P{(Z̃, Z̃(1), . . . , Z̃(H)) ∈ Aα}+TV
(
(Z̃, Z̃(1), . . . , Z̃(H)), (Z,Z(1), . . . , Z(H))

)
= P{(Z̃, Z̃(1), . . . , Z̃(H)) ∈ Aα}+TV

(
{r̄ · f}⊗m, {r̄⋆ · f}⊗m

)
≤ α+TV

(
{r̄ · f}⊗m, {r̄⋆ · f}⊗m

)
,

where the first inequality follows from the definition of Total Variation distance, the second equality from (54),

and the final inequality from the exchangeability of (Z̃, Z̃(1), . . . , Z̃(H)). This arises from the fact that the

Ỹi’s are i.i.d. from a distribution proportional to r̂ f , and the DRPT copies Z̃(1), . . . , Z̃(H) are generated using

the same approximation r̂. This argument holds whether the permutations are sampled i.i.d. according to (4)

or generated via Algorithm 2, and thus concludes the proof.

Appendix B Analysis of the discrete DRPT

In this section we provide some further insights for the discrete DRPT presented in Section 2.1. For the case

X = Y = {0, 1} (i.e. J = 1), we recall that the testing problem (1) is equivalent to

H0 :
g1
g0

=
r1f1
r0f0

,

for r0, r1 > 0. As a result, we may assume without loss of generality that r0 = 1, since our interest lies

solely in the ratio r1/r0, and r1 ≡ r ≥ 1; if this condition does not hold, we can simply switch the roles of

f and g and consider 1/r instead. Now, it is instructive to analyse the behaviour of the sample mean of the

permuted data. In this regard, Lemma 7 implies the following unconditional result:

Corollary 15. Let Nσ
Y,1 =

∑n+m
j=n+1 Zσ(j), where σ is sampled according to (3). If n/m → τ > 0, then

E[(m−1Nσ
Y,1)

k] −→ γk1 for all k ∈ N as n,m→ +∞, where

γ1(f1, g1, r, τ) ≡ γ1 =

 τf1+g1
τ+1 +

(r−1) τ−1
τ+1 (τf1+g1)+τ+r−

√
(τ+r+(r−1)(τf1+g1))2−4(r−1)r(τf1+g1)

2(r−1) if r > 1,

τf1+g1
τ+1 if r = 1.

(55)

Proof. Let µ be the counting measure and equip the set {0, 1} with the discrete topology. Lemma 7 in

Section 3 gives

1

m

n+m∑
j=n+1

φ(Zσ(j))
P−→
∫
φ{τf + g − τh∞}dµ,
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for every bounded and continuous function φ on X , where

h∞ =
τf + g

τ + λ∞(r1{· = 1}+ 1{· = 0})

and λ∞ > 0 is the positive solution of

1 =

∫
h∞dµ =

τf1 + g1
τ + λ∞r

+
τf0 + g0
τ + λ∞

=
τf1 + g1
τ + λ∞r

− τf1 + g1
τ + λ∞

+
τ + 1

τ + λ∞
.

As X = Y = {0, 1}, we can choose φ = id and obtain that

m−1Nσ
Y,1

P−→ τf1 + g1 − τ
τf1 + g1
τ + λ∞r

= γ1,

where in the last step we simply plugged in the expression for λ∞, which can be found explicitly by solving

the equation above. We have thus established that m−1Nσ
Y,1

P−→ γ1, which implies the existence of a sub-

sequence along which convergence holds almost surely; applying the dominated convergence theorem yields

E[(m−1Nσ
Y,1)

k] → γk1 for all k ∈ N along this subsequence, and by the uniqueness of limits, the convergence

extends to the entire sequence. This completes the proof.

This result shows that m−1Nσ
Y,1

P−→ γ1, which offers a more explicit interpretation of the result in

Lemma 7 and emphasises the intricate dependence of the limiting distribution of the permuted data on the

initial parameters (f1, g1, r, τ), even in simple cases. Interestingly, under the null hypothesis, γ1 = g1, as

expected. Furthermore, if r = 1, we find that γ1 = (τf1 + g1)/(τ + 1), reflecting the fact that the DRPT

selects permutations uniformly at random when r = 1, consistent with (8). Similarly, we can establish an

analogous result for the convergence of n−1
∑n
i=1 Zσ(i) to ν1, where ν1 satisfies τf1 + g1 = τν1 + γ1, by

leveraging the constraint that the total number of ones must remain conserved.

Coming to power results for the case J ≥ 1, we already know by Theorem 6 that the discrete DRPT

is consistent when IPMs which are functions of (Nσ
Y,0, . . . , N

σ
Y,J) are used as test statistics. We now prove

another consistency result for a different choice of the test statistic. In this regard, observe that in this

setting the null hypothesis (1) is equivalent to

H0 :
gj
g0

=
rjfj
r0f0

for all j ∈ [J ],

for fixed r = (r0, r1, . . . , rJ) ∈ RJ+1
+ . As before, we can assume r0 = 1 without loss of generality. This

motivates the introduction of

T (Zσ) =
1

nm

J∑
j=1

∣∣∣r−1/2
j Nσ

Y,j(tot0 −Nσ
Y,0)− r

1/2
j Nσ

Y,0(totj −Nσ
Y,j)
∣∣∣ , (56)

which serves as an estimator of D(f, g) ≡ Dr(f, g) :=
∑
j∈[J]

∣∣∣r−1/2
j gjf0 − r

1/2
j fjg0

∣∣∣, which is a population

measure of discrepancy that characterises the null. We can prove the following:
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Proposition 16. Fix α ∈ (0, 1) and H > ⌈1/α − 1⌉. Let X = Y = {0, . . . , J} =: J with J ≥ 1,

r = (r0 = 1, r1, . . . , rJ) ∈ RJ+1
+ , and let H0 : gj ∝ rjfj for all j ∈ J . Then, if n/m → τ > 0, the discrete

DRPT using (56) as its test statistic is consistent for H0.

Proof. Let µ be the counting measure, and equip the set J with the discrete topology. Then, Lemma 7 gives

Nσ
Y,j

m
=

1

m

n+m∑
i=n+1

1{Zσ(i) = j} P−→
∫
1{· = j}{τf + g − τh∞}dµ

=

J∑
k=0

1{k = j}
{
τfk + gk − τ

τfk + gk
τ + λ∞rk

}
=

λ∞rj
τ + λ∞rj

(τfj + gj),

where λ∞ is the positive solution of

∫
τf + g

τ + λ∞r
=

J∑
k=0

τfk + gk
τ + λ∞rk

= 1.

As a result, the generic j-th term of the test statistic (56) converges in probability to

1

nm

{
r
−1/2
j Nσ

Y,j(tot0 −Nσ
Y,0)− r

1/2
j Nσ

Y,0(totj −Nσ
Y,j)
}

P−→ r
−1/2
j

λ∞rj
τ + λ∞rj

(τfj + gj)

{
τf0 + g0

τ
− 1

τ

λ∞r0
τ + λ∞r0

(τf0 + g0)

}
+ r

1/2
j

λ∞r0
τ + λ∞r0

(τf0 + g0)

{
τfj + gj

τ
− 1

τ

λ∞rj
τ + λ∞rj

(τfj + gj)

}
= r

−1/2
j (τf0 + g0)(τfj + gj)

λ∞rj(1− r0)

(τ + λ∞r0)(τ + λ∞rj)
= 0,

since r0 = 1. This shows that T (Zσ)
P−→ 0, and since T (Z)

P−→ D(f, g) > 0 under the alternative,

consistency follows exactly as in the proof of Theorem 6.

Finally, coming back again to the case of binary data, the dependence of the minimax separation on r

can be analysed more effectively compared to Theorems 9 and 10. In this regard, let X = Y = {0, 1} and

r ≥ 1, and and consider the measure of discrepancy defined above, i.e. D(f, g) =
∣∣r−1/2g1f0 − r1/2f1g0

∣∣.
Similarly to Remark 2, this quantity remains unchanged when taking reciprocals — in other words, it is

invariant under swapping the zeros and ones, and the X’s with the Y ’s. Now, for fixed r ≥ 1 and ρ > 0,

consider

H0 :
g1
g0

= r
f1
f0

vs. Hr
1 (ρ) : D(f, g) > ρ.

Write Ψ for the set of all tests, that is randomised functions of (X1, . . . , Xn, Y1, . . . , Ym), and Ψ(α) for the

set of tests of size α, with α ∈ (0, 1). For β ∈ (0, 1− α), we may define the minimax separation as

ρ∗r ≡ ρ∗r(n,m,α, β) := inf

{
ρ > 0 : α+ inf

φ∈Ψ(α)
sup

(f,g)∈Hr
1 (ρ)

EP (1− φ) ≤ α+ β

}
,

where P = P⊗n
f ⊗ P⊗m

g . We now prove a lower bound on ρ∗r .
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Proposition 17. Let ρ∗r the minimax separation defined above and suppose that α+β < 1/2. We have that

ρ∗r(n,m,α, β) ≥
√

r
(n∧m)(1+r)2 {1− 2(α+ β)}.

Proof. For 0 < ρ2 ≤ r
(1+r)2 , consider

(f (0), g(0)) =

((
1

2
,
1

2

)
,

(
1

1 + r
,

r

1 + r

))
and (f (1), g(1)) =

((
1− γ

2
,
1 + γ

2

)
,

(
1

1 + r
,

r

1 + r

))
,

with γ = 1+r√
r
ρ. Observe that D(f (0), g(0)) = 0 and D(f (1), g(1)) = ρ. We will use the well-known fact that

the squared Hellinger distance between two discrete probability distributions p, q supported on [J ] is given

by

H2(p, q) =
∑
i∈[J]

(
√
pi −

√
qi)

2.

Writing Pf(i) for the Bernoulli distribution with parameter f (i) for i ∈ {0, 1}, we thus have

H2(Pf(0) , Pf(1)) =
1

2

{(
1−

√
1− γ

)2
+
(
1−

√
1 + γ

)2}
≤ γ2 =

(1 + r)2

r
ρ2,

where the last inequality relies on (1 −
√
1± x)2 ≤ x2 , and further shows that H2(Pf(0) , Pf(1)) ≤ 1 since

ρ2 ≤ r
(1+r)2 . We can then bound the minimax risk using a standard Le-Cam two-point argument as

α+ sup
(f,g)∈Hr

1 (ρ)

EP (1− φ) ≥ sup
(f,g)∈H0

EP φ+ sup
(f,g)∈Hr

1 (ρ)

EP (1− φ)

≥ 1− TV
(
P⊗n
f(0) ⊗ P⊗m

g(0)
, P⊗n

f(1) ⊗ P⊗m
g(1)

)
≥ 1−

{
TV

(
P⊗n
f(0) , P

⊗n
f(1)

)
+TV

(
P⊗m
g(0)

, P⊗m
g(1)

)}
= 1− TV

(
P⊗n
f(0) , P

⊗n
f(1)

)
≥ 1

2

(
1− 1

2
H2(Pf(0) , Pf(1))

)2n

≥ 1

2

(
1− nH2(Pf(0) , Pf(1))

)
≥ 1

2

(
1− n(1 + r)2

r
ρ2
)
,

where in the fifth inequality we used the fact that (1−x)n ≥ 1−nx for n ∈ N and x ≤ 1. The last display is

lower bounded by α+ β if and only if ρ2 ≤ r
n(1+r)2 {1− 2(α+ β)}. Note that 0 < ρ2 ≤ r

(1+r)2 is necessarily

satisfied since n ≥ 1 and 0 ≤ α + β < 1/2. Switching the roles of f (i) and g(i) in light of the symmetry

between the X’s and the Y ’s concludes the proof.

Proposition 17 suggests that the testing problem is the hardest when r = 1. As already mentioned in

Section 3, this is accordance with the goodness-of-fit (GoF) testing problem, where the goal is to test the

null hypothesis f = f0 for a fixed density f0, based on i.i.d. samples X1, . . . , Xn ∼ f . In the GoF setting,

the minimax separation rate depends on the choice of f0, and it has been shown that the problem is hardest

when f0 is the uniform distribution (see Balakrishnan and Wasserman, 2019). In complete analogy, and

according to the simulation results in Section 5.1, Proposition 17 seems to indicate that r = 1 corresponds

to the harder testing problem. In other words, more extreme shifts should be easier to detect. We validate

this conjecture through simulations on synthetic data. Here, we replicate the setup used in the proof of

64



Proposition 17, selecting

(fr, gr) =

((
1− γr

2
,
1 + γr

2

)
,

(
1

1 + r
,

r

1 + r

))
with γr =

1 + r√
r
η.

In Figure 8, we assess the performance of the discrete DRPT using (56) as its test statistic over 3000

repetitions with n = m = 500, r ∈ {0.1, 0.5, 1, 2, 10} and plotting an estimate of the power function for

varying η ∈ {0, . . . , 0.1}. The results empirically support the tightness of the lower bound of Proposition 17,

demonstrating that the power of the discrete DRPT increases when r moves further away from 1.

Figure 8: Simulation study with synthetic bi-
nary data for varying r ∈ {0.1, 0.5, 1, 2, 10}.
The discrete DRPT was implemented us-
ing (56).

Figure 9: Analogue of Figure 7, also including
results for the discrete DRPT based on (56).
Legend: V corresponds to the test statis-
tic (11), and D to (56).

Establishing the optimality of the rate 1/
√
r(n ∧m) is more delicate. While the two-moment method

used in the proof of Theorem 9 suffices to derive an upper bound on ρ∗r , it yields a loose dependence on r,

even though it accurately captures the scaling with n and m. Specifically, we can show that Var[T (Z)] ≲ r/n

and Var[T (Zσ)] ≲ r2/n. The first inequality follows from the independence between the X’s and the Y ’s,

while the second relies on the following proposition, which we include for completeness.

Proposition 18. Assume r ≥ 1 and X = Y = {0, 1}. Define Nσ
Y,1 =

∑n+m
i=n+1 Zσ(i), where σ is sampled

according to (3), and let γ1 be as in (55). Then

E[(Nσ
Y,1 −mγ1)

2] ≤ (1 + r)n ∧m+ 2f1(1− f1)n+ 2g1(1− g1)m.

Proof. All the expectations are to be intended conditionally to Z. We will assume n = τm throughout the

proof to simplify the computations. Write T = tot1, and define

px1 =
(n− T + x)x

(1 + r)nm
and px2 =

r(T − x)(m− x)

(1 + r)nm
.
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Figure 10: Analogue of Figure 4, also including
results for the DRPT based on (56). Legend: U
corresponds to the test statistic (12), V to (11),
and D to (56).

Figure 11: Analogue of Figure 5, also including
results for the DRPT based on (56). Legend: U
corresponds to the test statistic (12), V to (11),
and D to (56).

Let γ(T ) be the solution to px1 = px2 , i.e.

γ(T ) =
1

2(r − 1)

{
(r − 1)T + n+ rm−

√
[(r − 1)T + n− rm]2 + 4rmn

}
.

We will show that E[(Nσ
Y,1 − γ(T ))2] ≤ 1+r

2 n∧m and E[(mγ1 − γ(T ))2] ≤ nf1(1− f1) +mg1(1− g1), which

imply the desired result since E[(Nσ
Y,1 −mγ1)

2] ≤ 2E[{Nσ
Y,1 − γ(T )}2] + 2E[{mγ1 − γ(T )}2]. Now, as for the

latter, observe that mγ1 = γ(nf1 +mg1), and that γ(·) is 1−Lipschitz. This is due to fact that

|γ′(x)| ≤ 1

2

(
1 +

|(r − 1)x+ n− rm|√
[(r − 1)x+ n− rm]2 + 4rnm

)
≤ 1.

Hence,

E[(mγ1 − γ(T ))2] = E[{γ(nf1 +mg1)− γ(T )}2] ≤ E[{(nf1 +mg1)− T }2]

= E

{(nf1 +mg1)−
n∑
i=1

Xi −
m∑
i=1

Yi

}2
 = Var

[
n∑
i=1

Xi

]
+Var

[
m∑
i=1

Yi

]
= nf1(1− f1) +mg1(1− g1).

As for the other term, start by noticing that Algorithm 1 works the same if at every time step t ∈ N we just

choose a single couple (i, j) with i ∈ [n] and j ∈ {n+ 1, . . . , n+m} at random, and then switch Zσt(i) with

Zσt(j) with probability equal to rZσt(i)/(rZσt(i) + rZσt(j)). This is not efficient from a computational point of

view, but simplifies the proof, since every time step t corresponds at most to one switch. Now, let Kt be the

sum of the last m observations after t steps of this simplified algorithm, and observe that it has the same

distribution of Nσ
Y,1 for every t ∈ N when the procedure is initialised at stationarity. Thus, for γ ≡ γ(T ) to
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ease notation, it follows that

E[(Kt+1 − γ)2|Kt]− (Kt − γ)2 = pKt
1 + pKt

2 + 2{(pKt
2 − pγ2)− (pKt

1 − pγ1)}(Kt − γ)

= pKt
1 + pKt

2 − 2(Kt − γ)2

(1 + r)nm

√
[(r − 1)T + n− rm]2 + 4rmn+

2(r − 1)

(1 + r)nm
(Kt − γ)3

≤ 1− 2(Kt − γ)2

(1 + r)nm

√
[(r − 1)T + n− rm]2 + 4rmn+

2(r − 1)(m− γ)

(1 + r)nm
(Kt − γ)2

= 1− 2(Kt − γ)2

(1 + r)nm

{√
[(r − 1)T + n− rm]2 + 4rmn− (r − 1)(m− γ)

}
= 1− (Kt − γ)2

(1 + r)nm

{√
[(r − 1)T + n− rm]2 + 4rmn+ (r − 1)T + n− (r − 2)m

}
≤ 1− (Kt − γ)2

(1 + r)nm
{|(r − 1)T + n− rm|+ (r − 1)T + n− rm+ 2m}

≤ 1− 2(Kt − γ)2

(1 + r)n
≤ 1− 2(Kt − γ)2

(1 + r)n
.

Taking expectation with respect to Kt under stationarity yields

0 ≤ 1− 2

(1 + r)n
E[{Kt − γ(T )}2] = 1− 2

(1 + r)n
E[{Nσ

Y,1 − γ(T )}2],

implying

E[{Nσ
Y,1 − γ(T )}2] ≤ 1 + r

2
n.

By symmetry, we can repeat the same computations for Nσ
X,1 := T −Nσ

Y,1 and ν(T ) := T − γ(T ) and get

E[{Nσ
Y,1 − γ(T )}2] = E[{Nσ

X,1 − ν(T )}2] ≤ 1 + r

2
m,

which gives E[{Nσ
Y,1 − γ(T )}2] ≤ 1+r

2 n ∧m and concludes the proof.

Finally, Figures 9, 10, and 11 present the performance of the discrete DRPT method using the test

statistic (56), and compare it with the results from Section 5, where the statistics (11) and (12) were

employed. The findings indicate that in the synthetic data scenarios (corresponding to Figures 4 and 5),

(56) appears significantly less powerful than the RKHS-based approach discussed in the main text, while in

the Frisk example in Figure 9 the two methods seem to be equivalent.
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